Showing posts with label Bangun datar. Show all posts
Showing posts with label Bangun datar. Show all posts

Carilah titik pusat dan jari-jari lingkaran x² + y² - 3x - 4y + 20 = 0!

Ketika diberikan persamaan lingkaran, kita bisa menghitung titik pusatnya dengan menggunakan rumus tertentu.

Seperti apa rumusnya?



Konsep soal

Untuk mendapatkan titik pusat, kita akan menggunakan rumus di bawah. Tetapi sebelumnya kita lihat dulu rumus umum persamaan lingkaran.

x² + y² + Ax + By + C = 0

Itulah rumus umum lingkaran.

Mencari titik pusat lingkaran rumus yang digunakan :

a = -A/2
b = -B/2

Sedangkan untuk jari-jarinya :


Keterangan :
  • r = jari-jari lingkaran
  • a = titik pusat lingkaran pada sumbu x
  • b = titik pusat lingkaran pada sumbu y
  • C = konstanta pada persamaan lingkaran

Soal 

Sekarang kita coba soalnya.


Soal :

1. Carilah titik pusat dan jari-jari lingkaran x² + y² - 3x - 4y - 20 = 0!


Tulis kembali persamaan lingkarannya dan persamaan umumnya.

x² + y² - 3- 4- 20 = 0
x² + y² + A+ B+ C = 0

Perhatikan di bawah ini :
  • A adalah koefisien x, sehingga A = -3
    Warna merah
  • B adalah koefisien y, sehingga B = -4
    Warna biru
  • C adalah konstanta, tidak memiliki variabel, C = -20
    Warna hijau

Begitulah langkah menentukan A, B dan C.
Sekarang kita bisa masuk ke rumus mencari titik pusat.



Titik pusat (a,b)

Sekarang kita gunakan rumusnya.

a = -A/2
  • A = -3
a = -(-3)/2
  • -(-3) = +3

a = ³∕₂


Selanjutnya cari b.

b = -B/2
  • B = -4
b = -(-4)/2
  • -(-4) = +4
b = 4/2

b = 2

Kita peroleh :
  • a = ³∕₂
  • b = 2

Sehingga tidak pusatnya (a,b) = (³∕₂,2)



Mencari jari-jari (r)

Diketahui :
  • a = ³∕₂
  • b = 2
  • C = -20

  • Ganti a, b dan C
  • Samakan penyebutnya biar menjadi 4 semua



Nah...
Itulah jari-jari lingkarannya.



Soal :

2.  Tentukan titik pusat dan jari-jari lingkaran x² + y² + 4x - 10y + 5 = 0!


Kita tentukan A dan B dengan menuliskan kembali persamaan lingkarannya dan membandingkan dengan rumus umum lingkaran.

x² + y² + 4- 10+ 5 = 0
x² + y² + A+ B+ C = 0

Perhatikan di bawah ini :
  • A adalah koefisien x, sehingga A = 4
    Warna merah
  • B adalah koefisien y, sehingga B = -10
    Warna biru
  • C adalah konstanta, tidak memiliki variabel, C = +5
    Warna hijau

Ok...
Kita sudah mendapatkan nilai dari A, B dan C.


Menentukan titik pusat (a,b)

Gunakan rumus untuk mencari titik pusat pada koordinat x dan y.

a = -A/2
  • A = 4
a = -4/2

a = -2


Selanjutnya cari b.

b = -B/2
  • B = -10
b = -(-10)/2
  • -(-10) = +10
b = 10/2

b = 5

Kita peroleh :
  • a = -2
  • b = 5
Sehingga tidak pusatnya (a,b) = (-2,5)


Menghitung  jari-jari (r)

Dari perhitungan di atas kita sudah mendapatkan beberapa nilai yang diperlukan untuk menghitung jari-jari (r) lingkaran.
  • a = -2
  • b = 5
  • C = +5
Masukkan nilai-nilai di atas ke rumus jari-jari lingkaran.


Bentuk di  atas masih bisa disederhanakan lagi.


Nah...
Jari-jarinya adalah 2√6.


Baca juga ya :

Keliling persegi panjang 28 cm dan lebarnya 6 cm. Hitunglah panjangnya!

Pada soal diketahui keliling dari sebuah persegi panjang dan lebarnya. Untuk mendapatkan panjang, kita pastinya menggunakan rumus keliling.


Konsep soal

Untuk mendapatkan panjang atau lebar jika diketahui keliling sebuah persegi panjang, ada rumus yang membantu.

Panjang (p) = (keliling ÷ 2) - l
Lebar (l) = (keliling ÷ 2) - p
Keterangan :
  • p = panjang persegi panjang
  • l = lebar persegi panjang

Nah...
Itulah rumus yang membantu kita mendapatkan panjang atau lebar suatu persegi panjang jika diketahui kelilingnya.

Soal

Ok...
Sudah tidak sabar mencoba soalnya?


Soal :

1. Sebuah persegi panjang memiliki keliling 28 cm dan lebarnya 6 cm. Hitunglah panjangnya!


Dalam soal diketahui :
  • Keliling = 28 cm
  • lebar (l) = 6 cm
Untuk mendapatkan panjang (p), tinggal masukkan saja ke dalam rumus yang sudah diberikan di atas.

p = (keliling ÷ 2) - l
  • Ganti keliling = 28
  • Ganti l = 6

p = (28 ÷ 2) - 6
  • Kerjakan dulu yang di dalam kurung
    28 ÷ 2 = 14
p = 14 - 6

p = 8 cm.

Sudah ketemu.
Panjang dari persegi panjangnya adalah 8 cm.

Bagaimana, mudah sekali bukan?



Soal :

2. Carilah lebar dari persegi panjang yang keliling dan panjangnya masing-masing 30 cm dan 9 cm!


Cek dulu data pada soal :
  • Keliling = 30cm
  • Panjang (p) = 9 cm
Sekarang gunakan rumus untuk mencari lebar.

l = (keliling ÷ 2) - p
  • Ganti keliling = 30
  • Ganti p = 9

l = (30÷ 2) - 9

l = 15 - 9

l = 6 cm

Nah...
Sudah ketemu lebarnya, yaitu 6 cm.


Hitung luas persegi panjang pada soal 2

Misalnya soal kedua ada lanjutannya, yaitu diminta menghitung luas persegi panjangnya. Tentu saja bisa.

Mengapa?
Karena kita sudah tahu panjang dan lebarnya.

Sekarang data pada soal 2 adalah :
  • Panjang (p) = 9 cm
  • Lebar (l) = 6 cm
Masih ingat rumus luas persegi panjang?

Luas = p × l

Sekarang kita masukkan p dan l ke dalam rumus luas.

Luas = p × l
  • Ganti p = 9 cm
  • Ganti l = 6 cm
Luas = 9 × 6

Luas = 54 cm²

Nah...
Itulah cara menghitung panjang dan lebar persegi panjang jika diketahui kelilingnya. Semoga membantu ya.


Baca juga ya:

Keliling persegi panjang adalah 30 cm. Jika panjang dan lebarnya 3x dan 2x, hitunglah panjang dan lebarnya!

Karena diketahui keliling pada soal, maka kita akan menggunakan rumus keliling untuk mendapatkan panjang dan lebar yang ditanyakan.


Langkah-langkah pengerjaan soalnya sebagai berikut :
  • Mencari nilai x menggunakan rumus keliling
  • Setelah nilai x diketahui, barulah mencari panjang dan lebarnya.
Soal

Baik...
Kita coba saja soalnya agar lebih paham.


Soal :

1. Keliling sebuah persegi panjang adalah 30 cm. Jika panjang dan lebarnya masing-masing 3x dan 2x, berapakah panjang dan lebar sebenarnya?


Diketahui pada soal :
  • Keliling = 30 cm
  • Panjang = 3x
  • Lebar = 2x
Panjang dan lebar yang masih memiliki variabel "x" ini bukanlah nilai yang sebenarnya. Kita harus tahu berapa nilai "x"-nya untuk mendapatkan nilai yang asli.



Mencari nilai "x"

Karena diketahui keliling, kita gunakan rumus keliling.

Keliling = 2p + 2l

Itulah rumus keliling persegi panjang.

Keliling = 2p + 2l, bisa ditulis seperti di bawah.

Keliling = 2×p + 2×l
  • Masukkan keliling = 30
  • p = 3x
  • l = 2x
30 = 2×3x + 2×2x
  • 2×3x = 6x
  • 2×2x = 4x
30 = 6x + 4x

30 = 10x
  • Untuk mendapatkan x, bagi 30 dengan 10
x = 30 ÷ 10

x = 3.

Nilai x sudah diperoleh, yaitu 3.



Mencari panjang dan lebar sebenarnya

Nilai x kita dapatkan dan sekarang bisa dicari panjang dan lebar sebenarnya.

Panjang = 3x
Panjang = 3×x
  • Ganti x dengan 3, sesuai hasil perhitungan di atas
Panjang = 3×3
Panjang = 9 cm

Lebar = 2x
Lebar = 2×x
  • Ganti x = 3
Lebar = 2×3
Lebar = 6 cm

Jadi...
Panjang dan lebar sebenarnya adalah 9 cm dan 6 cm.

Seperti itulah cara mendapatkan panjang dan lebar sebenarnya dari suatu persegi panjang yang diketahui keliling, serta panjang dan lebarnya masih memiliki variabel x.

Luasnya berapa?

Berapa luas persegi panjang di atas??
Jika pertanyaannya ditambah seperti itu, kita bisa kok menghitungnya karena sudah mendapatkan panjang dan lebar sebenarnya.

Rumus luas persegi panjang = p×l
  • p = 9 cm
  • l = 6 cm
Luas = p×l

Luas = 9×6

Luas = 54 cm²

Ingat ya!!
Satuan luas harus ada pangkat dua pada "cm". 
Jangan sampai salah.

Soal kedua


Soal :

2. Sebuah persegi panjang memiliki panjang dan lebar 4x dan x. Jika kelilingnya 40 cm, berapakah panjang dan lebar sebenarnya?


Data di soal :
  • Keliling = 40 cm
  • Panjang = 4x
  • Lebar = x
Langkahnya sama seperti soal pertama.


Mencari nilai "x"

Gunakan rumus keliling demi mendapatkan nilai "x".

Keliling = 2p + 2l

Keliling = 2×p + 2×l
  • Keliling = 40
  • p = 4x
  • l = x
40 = 2×4x + 2×x
  • 2×4x = 8x
  • 2×x = 2x
40 = 8x + 2x

40 = 10x
  • Untuk mendapatkan x, bagi 40 dengan 10
x = 40 ÷ 10

x = 4.

Kita dapatkan x = 4.



Mencari panjang dan lebar sebenarnya

Setelah menemukan nilai x, barulah bisa mencari panjang dan lebar sebenarnya.

Panjang = 4x
Panjang = 4×x
  • Ganti x dengan 4, sesuai hasil perhitungan di atas
Panjang = 4×3
Panjang = 12 cm

Lebar = x
  • Ganti x = 4
Lebar = 4 cm.

Nah...
Kita sudah menemukan panjang dan lebarnya.
Panjang = 16 cm
Lebar 4 cm.


Baca juga ya :

Sebuah bingkai berukuran 20cm × 20cm berisi foto berukuran 10cm×15cm. Berapa luas bingkai yang tidak tertutup foto?

Masih berhubungan dengan bangun datar, kita bisa mencari luas area yang tidak tertutup bingkai dengan cara mencari luas masing-masing bangun.


Konsep soal

Mari perhatikan konsep yang dipakai untuk memecahkan soal ini.

Yang harus dihitung adalah:
  • Mencari luas bingkai
  • Mencari luas foto
  • Langkah terakhir, kurangkan keduanya
Akhirnya diperoleh luas bingkai yang tidak tertutup foto.
Mudah sekali bukan?

Luas apa yang digunakan?
Mengingat bingkai foto berbentuk persegi atau persegi panjang, jadi kita gunakan rumus luas keduanya. Tergantung ukuran yang diketahui.

Soal Pertama

Ok, kita coba soal pertama...


Soal:

1. Sebuah bingkai berukuran 20cm × 20cm berisi foto berukuran 10cm×15cm. Berapa luas bingkai yang tidak tertutup foto?


Kita akan kerjakan sesuai dengan konsep soal yang diberikan.
Data pada soal:
  • Ukuran bingkai 20cm×20cm
  • Ukuran foto 10cm×15cm


Mencari luas masing-masing, bingkai dan foto

Luas bingkai = 20×20
Luas bingkai = 400 cm²

Luas foto = 10×15
Luas foto = 150 cm²



Mencari luas tidak tertutup foto

Luas bingkai yang tidak tertutup foto diperoleh dengan mengurangkan luas bingkai dan luas fotonya.

Luas tidak tertutup = luas bingkai - luas foto
Luas tidak tertutup = 400 - 150
Luas tidak tertutup = 250 cm²

Nah..
Selesai...
Itulah luas bingkai yang tidak tertutup foto. Mudah sekali kan cara mencarinya?

Soal kedua

Mari coba lagi soal lainnya.


Soal:

2. Sebuah foto berukuran 15cm×15cm dipasang pada bingkai 18cm×22cm. Berapakah luas bingkai yang tidak tertutup foto?


Caranya masih sama dengan soal pertama.
Kita harus mencari luas bingkai dan foto. Setelah itu dikurangkan untuk mendapatkan luas tidak tertutup foto.

Diketahui pada soal:
  • Ukuran bingkai 18cm×22cm
  • Ukuran foto 15cm×15cm


Mencari luas masing-masing, bingkai dan foto

Luas bingkai = 18×22
Luas bingkai = 396 cm²

Luas foto = 15×15
Luas foto = 225 cm²



Mencari luas tidak tertutup foto

Luas bingkai dan foto sudah diperoleh.
  • Luas bingkai 396cm²
  • Luas foto = 225 cm²

Luas tidak tertutup = luas bingkai - luas foto
Luas tidak tertutup = 396 - 225
Luas tidak tertutup = 171 cm²

Itulah luas bingkai yang tidak tertutup foto.
Bagaimana, mudah sekali bukan?
Selamat mencoba dan semoga membantu ya!!


Baca juga ya:

Sebuah tanah berukuran 16 meter × 8 meter akan dibuat pagar dengan pintu 3 meter. Jika biaya per meter Rp200.000,-, hitung total biaya!

Untuk menghitung biaya pembuatan pagar dari suatu tanah, kita harus mencari keliling tempatnya. Diketahuinya keliling memudahkan kita menghitung berapa dana yang diperlukan.



Jangan lupa, lihat bentuk tanahnya juga.
Jika soalnya seperti di atas, ada panjang dan lebar, berarti bentuknya persegi panjang.

Soal Pertama

Ok...
Kita kerjakan soalnya.


Soal:

1. Sebuah tanah berukuran 16 m dan 8 m akan dibuat pagar dengan pintu 3 meter. Jika biaya pembuatan per meter Rp200.000, hitung biaya total yang diperlukan!


Data pada soal:
  • Ukuran tanah
    Panjang 16 m
    Lebar 8 m
  • Dibuat pintu 3 meter.
  • Biaya pembuatan Rp200.000 per meter.


Mencari keliling

Kita hitung dulu keliling tanahnya.
  • Panjang (p)= 16 m
  • Lebar (l) = 8 m
Keliling persegi panjang = 2×p + 2×l
Keliling = 2×16 + 2×8
Keliling = 32 + 16
Keliling = 48 m



Mencari keliling dipotong pintu

Dalam soal dikatakan dibuat pintu sepanjang 3 meter.
Jadi, keliling tembok setelah dipotong pintu adalah:
= 48 - 3
= 45 meter.

Ingat ya!
Pintu dihitung ke dalam pembuatan pagar, sehingga harus dikurangi.


Mencari biaya total

Kita sudah dapat keliling yang akan dibuat pagar.
Yaitu 45 meter (keliling setelah dipotong pintu).

Biaya totalnya = keliling setelah dipotong pintu × biaya per meter
  • Keliling setelah dipotong pintu = 45 meter
  • Biaya per meter = Rp200.000
Biaya totalnya = 45 × Rp200.000
Biaya totalnya = Rp9.000.000

Jadi, dibutuhkan biaya Rp9.000.000,- rupiah untuk membangun pagarnya.

Soal Kedua

Sekarang kita kerjakan soal berikutnya.


Soal:

2. Sebuah tanah berbentuk persegi dengan panjang sisinya 8 meter. Hitunglah biaya pembuatan tembok jika dibuat pintu 2 meter dan biaya per meter Rp50.000,-!


Diketahui pada soal:
  • Tanah berbentuk persegi dengan panjang sisi 8 meter
  • Biaya pembuatan tembok per meter Rp50.000,-
  • Dibuat pintu 2 meter


Mencari keliling

Panjang sisi tanah (s) = 8 meter.

Tanah berbentuk persegi, maka kita gunakan keliling persegi untuk menghitung panjang tembok.

Keliling persegi panjang = 4×s
Keliling = 4×8
Keliling = 32 meter


Mencari keliling setelah dipotong pintu

Tanah itu akan dibuat pintu 2 meter.
Jadi kelilingnya harus dikurangi 2 meter untuk memberi ruang pada pintu.

Keliling setelah dipotong pintu = 32 - 2
Keliling setelah dipotong pintu = 30 meter.


Mencari biaya total

Keliling yang sudah dipotong pintu diketahui dan sekarang kita bisa mencari biaya total yang diperlukan.

Biaya totalnya = keliling setelah dipotong pintu × biaya per meter
  • Keliling setelah dipotong pintu = 30 meter
  • Biaya per meter = Rp50.000
Biaya totalnya = 30 × Rp50.000
Biaya totalnya = Rp1.500.000

Sehingga...
Biaya untuk pembuatan pagarnya adalah Rp1.500.000,-.


Baca juga ya:

Rumus cepat mencari luas segitiga sama sisi

Jika bertemu dengan soal mencari luas segitiga sama sisi, kita bisa menggunakan rumus cepat. Rumus yang memudahkan perhitungan dan jawaban diperoleh dalam waktu singkat.


Bagaimana rumus itu diperoleh?
Kita akan menggunakan cara biasa dan bantuan teori pitagoras. Nantinya diperoleh rumus jadi yang bisa digunakan untuk segitiga sama sisi.

Ingat!
Rumus yang diperoleh nanti hanya untuk segitiga sama sisi saja ya!
Segitiga lain tidak bisa menggunakan rumus cepat ini.

Memperoleh rumus cepatnya

Ok...
Sekarang kita mulai mencari rumus cepatnya.


Perhatikan segitiga sama sisi di atas.
  • Ketiga sisinya sama panjang.
    AB = BC = AC = a cm
  • BD dan CD setengah dari sisi segitiga = ½a


Mencari tinggi


Langkah pertama kita harus mencari tinggi dari segitiga sama sisi, yaitu AD.
Gunakan segitiga ADC yang siku-siku di D.

Kalau mau menggunakan segitiga ABD juga bisa kok, nanti hasilnya sama.

Baik, perhatikan lagi segitiga ADC.
  • Sisi miring AC = a
  • Sisi tegak CD = ½a
Karena ADC segitiga siku-siku, kita bisa mencari AD, yang berfungsi sebagai tinggi segitiga siku-siku sekaligus tinggi segitiga sama sisinya.

AC² = AD² + CD²
  • Masukkan data yang sudah diketahui
  • AC = a
  • CD = ½a
a² = AD² + (½a)²
  • (½a)² = ¼a²

a² = AD² + ¼a²
  • Pindahkan ¼a² ke ruas kiri sehingga menjadi -¼a²
a²-¼a² = AD
  • a² = ⁴∕₄a²
  • Kita buat seperti itu untuk menyamakan penyebut dengan ¼a²
⁴∕₄ a²-¼ a² = AD

³∕₄ a² = AD
  • Untuk mendapatkan AD, ruas di sebelah harus di akarkan ya
AD = √(³∕₄a²)
  • Akar ¼ adalah ½
  • Akar a² adalah a
  • Sedangkan 3 tetap di dalam akar karena tidak bisa diakarkan

AD = ½a√3



Memasukkan ke rumus luas


Tinggi segitiga sudah diperoleh dan sekarang kita masukkan ke rumus umum segitiga untuk mendapatkan rumus cepat segitiga sama sisi.

Rumus umum segitiga adalah:

Luas = ½×alas×tinggi
  • Alas = BC = a
  • Tinggi = AD = ½a√3
Luas = ½×a×½a√3

Luas = ¼×a²×√3

Nah...
Inilah rumus cepat memperoleh luas segitiga sama sisi.

Ingat!
Rumus luas = ¼×a²×√3 hanya bisa digunakan untuk segitiga sama sisi saja ya!!

Soal pertama

Sekarang kita terapkan rumus tersebut ke dalam soal.

Soal:

1. Segitiga sama sisi dengan panjang sisi 6 cm, hitunglah luasnya!


Yuk, langsung terapkan rumusnya untuk soal ini.

Data pada soal:
  • Panjang sisi segitiga sama sisi (a) = 6 cm.
Rumus luas segitiga sama sisi adalah:

Luas = ¼×a²×√3
  • Ganti a dengan 6
Luas = ¼×6²×√3

Luas = ¼×36×√3
  • ¼×36 = 9
Luas = 9×√3

Atau bisa ditulis:

Luas = 9√3 cm²

Bagaimana, cepat bukan??

Soal kedua

Ayo coba satu soal lagi agar lebih paham ya...

Soal:

2. Sebuah segitiga sama sisi dengan panjang sisi 8 cm, berapakah luasnya!


Cek dulu data pada soal:
  • Panjang sisi (a) = 8 cm
Masukkan data ini ke rumusnya langsung.

Luas = ¼×a²×√3
  • Ganti a dengan 8
Luas = ¼×8²×√3

Luas = ¼×64×√3
  • ¼×64 = 16
Luas = 16×√3

Luas = 16√3 cm²


Semoga membantu ya!!
Nanti kalau bertemu soal yang mencari luas segitiga sama sisi, bisa gunakan rumus ini.

 
Baca juga ya:

Luas segitiga 24 cm². Jika alasnya (3x+2) cm dan tingginya 6 cm, berapakah nilai x?

Karena diketahui luas segitiga, maka kita gunakan rumus luasnya untuk mendapatkan nilai x yang benar. Dengan melakukan pengubahan, kita bisa mendapatkan x berapa.


Soal pertama


Soal:

1. Luas segitiga 24 cm², alasnya (3x+2) cm dan tingginya 6 cm. Berapakah nilai x?


Diketahui pada soal:
  • Luas 24 cm²
  • Alasnya (3x+2) cm
  • Tinggi = 6 cm


Menghitung dengan rumus luas

Ok...
Sekarang masukkan data-data di atas ke dalam rumus luas segitiga.


  • Ganti luas dengan 24
  • Ganti alas dengan (3x+2)
  • Ganti tinggi dengan 6
Kemudian:
  • 2 dan 6 bisa disederhanakan
  • Caranya membagi keduanya dengan 2.
  • 1 per 1 bisa tidak ditulis, karena hasilnya 1


  • 3 dipindah ke ruas kiri menjadi pembagi karena ia menjadi pengali di ruas kanan


  • Pindahkan +2 ke ruas kiri menjadi -2
    Jika pindah ruas tandanya berubah ya, minus menjadi plus atau plus menjadi minus
  • Untuk mendapatkan x, bagi 6 dengan 3

Nah...
Diperoleh x = 2.

Bagaimana, sudah dimengerti ya??



Soal kedua


Soal:

2. Luas sebuah segitiga yang alasnya 12 cm dan tingginya (2x-2) cm adalah 36 cm². Hitunglah nilai x!


Ok...
Catat dulu data pada soal:
  • Luas = 36 cm²
  • Alasnya = 12 cm
  • Tinggi = (2x-2) cm


Menghitung dengan rumus luas

Sama seperti soal pertama, kita gunakan rumus luas segitiga untuk mendapatkan nilai x-nya berapa.




  • Ganti luas dengan 36
  • Ganti alas dengan 12
  • Ganti tinggi dengan (2x-2)
Kemudian:
  • 2 dan 12 bisa disederhanakan, keduanya dibagi dengan 2
  • 1 per 1 bisa tidak ditulis karena tidak mempengaruhi hasil.




Kemudian:
  • 6 di pindah ke ruas kiri menjadi pembagi, karena sebelumnya sebagai pengali
  • Kebalikan dari kali adalah bagi
Terus:
  • Pindahkan -2 ke ruas kiri menjadi +2
  • Untuk mendapatkan x, bagi 8 dengan 2, hasilnya 4
Nah...
Sudah diperoleh nilai x adalah 4.

Baca juga ya: