Mencari luas segitiga sama sisi diketahui panjang sisinya 6 cm


Beli di Shopee

Beli di Shopee
Mencari luas segitiga sama sisi yang hanya diketahui panjang sisinya, mengharuskan kita mencari tingginya lebih dulu.


Untuk mendapatkan tingginya, kita harus membagi segitiganya menjadi dua sehingga diperoleh segitiga siku-siku.

Selanjutnya, menggunakan teori pitagoras kitapun bisa mendapatkan tingginya.

Soal pertama

Langsung saja kita coba soalnya dan perhatikan penjelasan yang diberikan sehingga bisa mengerti dengan tipe soal seperti ini ya.


Soal :

1. Sebuah segitiga sama sisi dengan panjang sisinya 6 cm. Hitunglah keliling dan luasnya!


Data pada soal :
  • Segitiga sama sisi dengan panjang sisi 6 cm


Menghitung keliling

Kita sudah tahu panjang sisi dari segitiga sama sisinya, yaitu 6 cm.


Perhatikan gambar di atas.
Kita sebut segitiganya sebagai ABC.

Karena segitiga sama sisi, maka panjang masing-masing sisi adalah 6 cm.

Untuk menghitung kelilingnya sangat mudah.

Keliling = AB + BC + AC
  • Keliling diperoleh dengan menjumlahkan semua sisi pada segitiga.
Keliling = 6 + 6 + 6
Keliling = 18 cm

Keliling segitiga sudah diperoleh.



Menghitung luas

Sebelum bisa masuk ke rumus luas, kita harus tahu berapa tinggi segitiganya. Tinggi bisa diperoleh dengan membagi segitiga seperti di bawah.


Keterangan :
  • Tinggi segitiga = BD
  • Ada dua segitiga siku-siku, ABD dan BDC
Kita gunakan segitiga ABD saja.
 
Dari segitiga ABD kita dapatkan :
  • Sisi miring (AB) = 6 cm
  • Sisi tegak (AD) = 3 cm
  • Sisi tegak ( BD) sebagai tingginya.
Masukkan data di atas ke dalam rumus pitagoras.

AB² = AD² + BD²
  • Sisi miringnya adalah hasil penjumlahan dari dua sisi tegak
  • Masing-masing sisi mendapatkan pangkat dua
6² = 3² + BD²

36 = 9 + BD²
  • Pindahkan 9 ke ruas kiri sehingga menjadi -9
36 - 9 = BD²

27 = BD²
  • BD diperoleh dengan mengakarkan 27
BD = √27
  • Akar 27 disederhanakan.
  • 27 = 9×3 atau bisa ditulis 9.3
  • Tanda kali diganti titik (.)
BD = √(9.3)
  • Masing-masing bilangan mendapatkan akar
BD = √9.√3
  • √9 = 3
  • Sedangkan √3 tetap karena tidak bisa diakarkan
BD = 3.√3
  • Tanda titik (.) bisa dihilangkan dan penulisan 3 dan √3 digabung

BD = 3√3

BD = tinggi segitiga = 3√3 cm.




Setelah tinggi diketahui, barulah kita bisa mendapatkan luasnya.

Perhatikan lagi segitiga di atas.
  • Tinggi segitiga = BD = 3√3 cm
  • Alas segitiga = AC = 6 cm
Masukkan data tersebut ke rumus luas.

Luas = ½×alas×tinggi

Luas = ½×6×3√3
  • Kalikan dulu ½×6 = 3
  • ½×6 artinya sama dengan 6 dibagi 2

Luas = 3×3√3
  • Yang bisa dikali adalah 3 dengan 3
  • Sedangkan √3 tetap karena tidak ada kawan yang mempunyai akar lagi di dalam perkalian tersebut.
Luas = 9√3 cm²

Rumus cepat

Khusus segitiga sama sisi, ada rumus cepat yang memudahkan perhitungan. Kita akan menggunakannya sekarang.

Luas segitiga = ¼×s²×√3

Ingat ya!
Ini rumus untuk segitiga sama sisi saja.



Kita pakai untuk soal pertama.
Diketahui :
  • Panjang sisi (s) = 6 cm
Masukkan panjang sisinya ke rumus luas di atas.

Luas segitiga = ¼×s²×√3
  • s = 6 cm
Luas segitiga = ¼×6²×√3

Luas segitiga = ¼×36×√3
  • Kalikan ¼×36 = 9
  • ¼×36 artinya 36 dibagi 4
Luas segitiga = 9√3 cm²

Hasilnya sama dengan cara pertama di atas.


Baca juga ya :


EmoticonEmoticon