Showing posts with label Bangun datar. Show all posts
Showing posts with label Bangun datar. Show all posts

Keliling persegi panjang 30 cm. Panjangnya empat kali dari lebar. Hitunglah panjang dan lebarnya!

Berbekal keliling yang diketahui pada soal, kita bisa mencari panjang dan lebar sebenarnya ditambah keterangan panjangnya berapa kali lebar.



Kita olah data-data itu untuk menemukan ukuran sebenarnya.

Soal


Soal :

1. Keliling persegi panjang 30 cm, panjangnya empat kali lebarnya. Hitunglah panjang dan lebar sebenarnya dari persegi panjang tersebut!


Diketahui pada soal :
  • Keliling persegi panjang 30 cm
  • Panjang = 4 kali lebar


Maksud panjang empat kali lebar


Ini adalah satu kunci untuk menemukan jawaban, panjangnya empat kali lebar.
Artinya apa?

Panjang sama dengan empat kali lebar.
p = 4×l
  • p = panjang
  • l = lebar
p = 4l

Nah...
Itulah maksud dari panjang yang empat kali lebar.



Mencari panjang dan lebar sebenarnya


Dengan menggunakan rumus keliling, kita bisa menemukan panjang dan lebar dari persegi panjang ini. Sekarang datanya menjadi :
  • Keliling = 30 cm
  • p = 4l

Keliling persegi panjang = 2×(p+l)
  • Ganti keliling dengan 30
  • Ganti p dengan 4l
  • l dibiarkan saja.
30 = 2×(4l+l)
  • 4l + l = 5l
30 = 2×5l
  • 2×5l = 10l
30 = 10l
  • Untuk mendapatkan l, bagi 30 dengan 10
l = 30÷10

l = 3 cm.

Di sini kita sudah mendapatkan nilai lebar (l) = 3 cm.



Sekarang panjangnya bisa dicari.

p = 4l

p = 4×l
  • l = 3 (dari perhitungan di atas)
p = 4×3

p = 12 cm

Nah...
Panjang dan lebarnya sudah diperoleh.
Panjang = 12 cm
Lebar = 3 cm.

Luasnya berapa?

Misalnya soal dilanjutkan dengan mencari berapa luas persegi panjang. Kita lakukan perhitungan dengan menggunakan rumus luas.

Luas persegi panjang = panjang × lebar

Luas = p × l
  • p = 12 cm
  • l = 3 cm
Luas = 12 × 3

Luas = 36 cm²

Nah itulah luasnya.
Luas dari persegi panjang yang kelilingnya 30 cm dan panjangnya empat kali dari lebarnya.

Soal 2

Lanjut ke soal berikutnya.


Soal :

2. Sebuah persegi panjang yang panjangnya tiga kali lebarnya memiliki keliling 48 cm. Hitunglah luasnya!


Kita bedah data pada soal :
  • Keliling = 48 cm
  • panjang = tiga kali lebar



Mencari panjang dan lebar sebenarnya


Pada soal, panjang sama dengan tiga kali lebar.
Artinya :

panjang = tiga kali lebar
p = 3×l

p = 3l




Lanjutkan dengan mencari panjang dan lebar sebenarnya.
Gunakan rumus keliling, karena inilah yang diketahui pada soal.

Keliling persegi panjang = 2×(p+l)
  • Ganti keliling dengan 48
  • Ganti p dengan 3l
48 = 2×(3l+l)
  • 3l + l = 4l
48 = 2×4l
  • 2×4l = 8l
48 = 8l
  • Untuk mendapatkan l, bagi 48 dengan 8
l = 48 ÷ 8

l = 6 cm.




Lebar sudah diketahui dan kita bisa mencari panjangnya sekarang.
Panjang adalah tiga kali lebar.

p = 3l

p = 3×l
  • l = 6
p = 3×6

p = 18 cm.

Akhirnya sudah diperoleh panjang dan lebarnya :
  • p = 18 cm
  • l = 6 cm



Mencari luas persegi panjang


Karena panjang dan lebar sudah diketahui, luasnya bisa dicari.

Luas = p×l
  • p = 18 cm
  • l = 6 cm
Luas = 18×6

Luas = 108 cm²


Baca juga ya :

Dua diagonal persegi panjangnya (2x+2) cm dan (3x-3) cm. Hitunglah luasnya!

Nah...
Bagaimana kira-kira soalnya, sudah terbayang cara menjawabnya?


Jika masih bingung, perhatikan lagi penjelasan di bawah ini. Pasti bisa mengerti dengan baik karena dijelaskan juga konsep yang menyertai.

Konsep soal

Masih ingat dengan sifat-sifat persegi?
Inilah yang membantu kita dalam menyelesaikan soal ini.

Terutama sifat diagonalnya.

Kedua diagonal persegi sama panjang.

Inilah yang dijadikan patokan.
Sehingga kita bisa mendapatkan nilai x.

Setelah mendapatkan nilai x, barulah mencari panjang diagonal.

Dengan hanya menggunakan panjang diagonal sebuah persegi, kita bisa langsung menghitung luas persegi lho.
Tidak perlu mencari panjang sisinya lagi.

Caranya bagaimana?
Dengan menggunakan konsep belah ketupat.

Jika dilihat dari kedua diagonalnya, maka persegi bisa dikatakan sebagai belah ketupat. Nah, rumus luas belah ketupat bisa diterapkan.

Luas belah ketupat yaitu dengan mengalikan kedua diagonal terus dibagi dua.
Sudah selesai.

Soal

Ok...
Mari kita coba contoh soalnya agar lebih mengerti.

Soal :

1. Sebuah persegi memiliki dua diagonal yang panjangnya (2x+2) cm dan (3x-3) cm. Hitunglah luasnya!


Terlihat data yang diberikan sangat minim. Tetapi kita masih bisa mencari luas perseginya dengan menggunakan sifat-sifat persegi.

Sifat yang digunakan adalah kedua diagonal persegi selalu sama panjang.



Mencari nilai x

Kita harus mendapatkan nilai lebih dulu.

Ingat!!
Kedua diagonal persegi sama panjang.
  • diagonal satu = 2x+2
  • diagonal dua = 3x-3

Menggunakan sifat persegi, dimana kedua diagonalnya sama panjang, maka :

diagonal satu = diagonal dua

2x + 2 = 3x - 3
  • Kumpulkan suku yang sama-sama mengandung x.
    Pindahkan 2x ke ruas kanan menjadi -2x
  • Pindahkan suku yang tidak mengandung x ke ruas kiri
    -3 dipindah ke ruas kiri menjadi +3

2+3 = 3x - 2x

5 = x

Nah...
Kita sudah mendapatkan nilai x, yaitu 5.



Mencari panjang diagonal

Sekarang kita bisa mencari panjang diagonalnya.
Mau menggunakan diagonal pertama atau kedua sama saja nanti hasilnya.

Diagonal satu = 2x + 2
  • Ganti x = 5
Diagonal satu = 2.5 + 2
  • 2.5 artinya 2 dikali dengan 5 = 10
Diagonal satu = 10 + 2
Diagonal satu = 12 cm

Gunakan diagonal dua.
Diagonal dua = 3x-3
  • Ganti x = 5
Diagonal dua = 3.5 - 3
  • 3.5 artinya 3 dikali 5 = 15
Diagonal dua = 15 - 3
Diagonal dua = 12 cm

Nah...
Hasilnya sama ya...



Mencari luas persegi

Kedua diagonal sudah diketahui :
  • Diagonal satu (d₁) = 12
  • Diagonal dua (d₂) = 12

Untuk mencari luasnya kita gunakan konsep luas belah ketupat.
Mengapa?
Karena rumus luas belah ketupat menggunakan hasil perkalian kedua diagonalnya.

Kita akan melakukan yang sama.

Luas persegi = d₁×d₂÷2

Luas persegi = 12×12÷2

Luas persegi = 72 cm²

Nah...
Inilah luas persegi yang dimaksud.

Bagaimana, sudah mengerti ya??


Soal :

2. Panjang diagonal sebuah persegi adalah 8 cm. Hitunglah luasnya!!


Ok...
Sekarang soalnya sedikit berbeda.

Di sini yang diketahui adalah panjang diagonalnya, yaitu 8 cm.
Dan kita diminta menghitung luasnya.

Ini mudah sekali.

Kita tidak perlu mencari panjang sisi perseginya.
Cukup gunakan diagonalnya saja.

Rumusnya sama dengan soal pertama ketika mencari luas.
Cuma bedanya di sini sudah diketahui berapa panjang diagonalnya.



Mencari luas persegi

Pada soal sudah diketahui diagonal persegi, yaitu 8 cm.
Sehingga :
  • Diagonal satu (d₁) = 8 cm
  • Diagonal dua (d₂) = 8 cm

Ingat ya!!
Panjang diagonal persegi sama, antara diagonal satu dan dua.

Itu sifat persegi yang harus diingat.

Selanjutnya, kita bisa menghitung luas persegi dengan memasukkan kedua diagonal yang sudah diketahui di atas.

Luas persegi = d₁×d₂÷2

Luas persegi = 8×8÷2

Luas persegi = 32 cm²

Baca juga ya :

Diagonal persegi panjangnya 10 cm. Hitunglah luasnya!

Nah...
Hanya panjang diagonal yang diketahui, sedangkan sisi-sisinya tidak tahu berapa.


Inilah tantangannya.
Tapi jangan menyerah dulu, ada caranya kok. Pastinya anda terbantu.

Konsep

Ok...
Sebelum masuk ke soalnya, kita lihat dulu konsep soalnya seperti apa. Agar semakin paham dengan materi seperti ini.

Ada dua cara untuk menuntaskan soalnya.


Menggunakan rumus pitagoras

Ketika diketahui panjang diagonal persegi, kita bisa kok mencari panjang sisinya berapa. Rumus apa yang membantu.

Rumus pitagoras dong.

Mengapa?
Karena sudut di setiap persegi adalah 90⁰.

Rumus pitagoras berlaku ketika salah satu sudut segitiga ada yang 90⁰. 
Rumusnya seperti di bawah :

c² = a² + b²
  • c = sisi terpanjang, yaitu diagonal persegi
  • a = sisi terpendek pertama
  • b = sisi terpendek kedua

Dua sisi terpendek pada persegi panjangnya sama

Jangan lupakan...
Bahwa sisi terpendek, yang ada dua pada persegi, panjangnya sama. Inilah konsep penting yang membuat kita mudah menemukan panjang sisi persegi.

Setelah bertemu sisi persegi, bisa mencari luasnya.

Luas persegi adalah sisi × sisi.
Nah, selesai.


Menggunakan rumus belah ketupat

Yap...
Ini bisa kok...

Ketika diketahui panjang diagonalnya, kita bisa langsung menggunakan rumus belah ketupat untuk mendapatkan luas persegi.

Belah ketupat juga memiliki sifat yang mirip dengan persegi, yaitu panjang semua sisinya sama.
Tetapi tidak dengan diagonalnya.

Luas = d₁ × d₂ ÷ 2

  • d₁ = diagonal pertama
  • d₂ = diagonal kedua

Pada persegi, panjang diagonal pertama dan diagonal kedua adalah sama.

Ingat itu ya...
Dan kitapun mendapatkan luas persegi.

Soal

Ok...
Setelah membaca konsepnya, sekarang kita coba contoh soalnya.

Soal :

1. Diagonal sebuah persegi adalah 10 cm. Hitunglah luasnya!


Mari gunakan cara yang pertama dulu.

Dengan mencari sisi persegi

Hitung dulu berapa sisi perseginya.


Itulah gambar perseginya, diagonalnya 10 cm.
Kita bisa mencari sisi persegi (s).


Agar lebih mudah, kita buat dalam segitiga saja ya.
Gunakan rumus pitagoras.

c² = a² + b²
  • c = sisi terpanjang
  • a dan b  dua sisi terpendek dan panjangnya sama, karena persegi
  • a = b = s

10² = s² + s²
  • s² + s² = 2s²

100 = 2s²
  • Untuk mendapatkan s², bagi 100 dengan 2

s² = 100 ÷ 2

s² = 50




Ok...
Stop dulu sampai di sana, dimana kita mendapatkan s² = 50.

Lihat lagi rumus luas persegi yuk.

Luas = s × s
Luas = s²




Nah...
Di atas bukankah kita sudah mendapatkan s²?

s² = 50 

Luas = s² = 50.

Inilah luas persegi yang dicari.
Yaitu 50 cm².

Bagaimana, sudah mengerti sampai di sana??



Tidak perlu mencari panjang sisi (s)


Karena sudah langsung mendapatkan s², kita tidak perlu lagi mencari s.
Boleh saja sih kalau mau, nanti hasilnya juga sama.

Kita akan mendapatkan luas 50 cm² juga.


Menggunakan rumus luas belah ketupat

Ok...
Sekarang coba cara kedua.
Kita gunakan rumus belah ketupat.

Lihat dulu gambar di bawah.


Diagonal pertama (d₁) = AC
Diagonal kedua (d₂) = BD

Kedua diagonal panjangnya sama.
Itu adalah salah satu sifat persegi.

  • d₁ = 10 cm
  • d₂ = 10 cm

Masukkan data di atas ke dalam rumus luas belah ketupat.

Luas belah ketupat = d₁ × d₂ ÷ 2
= d₁ × d₂ ÷ 2
= 10 × 10 ÷ 2
= 100 ÷ 2
= 50 


Luas belah ketupat sama dengan luas persegi.
Yaitu 50 cm².

Nah...
Itulah cara mendapatkan luas persegi jika diketahui panjang diagonalnya berapa.
Semoga membantu ya...


Baca juga ya :

Segitiga dengan alas (3x+2) cm dan tinggi 6 cm. Berapa nilai x agar luasnya kurang dari 24 cm²?

Untuk soal ini, kita hanya memerlukan rumus luas segitiga. Tetapi menggunakan konsep pertidaksamaan.

Itu saja bedanya.


Contoh soal

Ok...
Kita masuk ke contoh soalnya saja yuk biar langsung mengerti.


Soal :

1. Agar luas segitiga dengan alas (3x+2) cm dan tinggi 6 cm kurang dari 24 cm², berapakah batas nilai x?


Diketahui pada soal :
  • Alas (a) = 3x+2
  • Tinggi (t) = 6 cm
  • Luas = 24 cm²

Sekarang kita gunakan rumus luas segitiga.



Masukkan data-data yang diketahui.


  • Pada soal dikatakan jika luasnya kurang dari 24.
  • Jadi rumus luasnya kita tukar posisi, L di sebelah kanan, sehingga menjadi < L

Terus :
  • Masukkan nilai dari alas (a) dan tinggi (t)
  • Sederhanakan 6 dan 2.
    Sama-sama dibagi 2.


  • 3 di sebelah kiri berfungsi sebagai pengali.
  • Pindahkan 3 ini ke ruas kanan sehingga berubah menjadi pembagi (ketika pindah ruas maka tandanya dibalik, dari pengali menjadi pembagi).


  • Pindahkan +2 yang ada di ruas kiri ke ruas kanan menjadi -2


  • Untuk mendapatkan x, kita bagi 6 dengan 3.
  • Angka di depan x adalah 3, itulah mengapa 6 harus dibagi dengan 3, sesuai dengan angka di depan x

Sehingga diperoleh x < 2.
Inilah nilai x, agar luasnya kurang dari 24 cm².


Bagaimana jika luasnya harus lebih dari 24 cm²?

Soalnya masih mirip, besar luas, alas dan tingginya masih sama seperti soal pertama. Yang membedakan hanyalah luasnya harus lebih dari 24 cm².

Diketahui :
  • Alas (a) = (3a+2)
  • Tinggi (t) = 6 cm
  • Luas (L) = 24 cm²

Sekarang syaratnya diubah menjadi lebih dari 24 cm².


Kemudian :



Nah...
Diperoleh a > 2.

Seperti itulah caranya dan semoga membantu ya...


Baca juga ya :

Jika luas lingkaran 36π cm², hitunglah kelilingnya!

Eits....
Jangan bingung dulu melihat soal seperti ini. Tenang, bisa diselesaikan dengan sangat mudah lho... Tidak percaya??


Yang menjadi pengganjal pastinya tanda phi (π).
Betul tidak?

Langkahnya

Masih ingat rumus luas lingkaran??

Luas = πr²

Nah...
Rumus luas lingkaran ada phi-nya kan??

Dan luas lingkaran yang diketahui pada soal juga ada phi (π). Sudah terbayang apa yang bisa dilakukan selanjutnya?
Tentu saja mencoretnya.

Kok bisa?
Karena kita memiliki phi (π) di masing-masing ruas. Jadi bisa dicoret untuk memudahkan perhitungan.

Dari perhitungan itu kita bisa mendapatkan jari-jari (r). Barulah bisa menghitung nilai kelilingnya dengan memasukkannya ke rumus.
Selesai...

Itu saja kok.

Contoh soal

Agar semakin mengerti, mari kerjakan soalnya dan perhatikan langkah-langkahnya. Pastinya sangat mudah.

Soal :

1. Diketahui luas sebuah lingkaran adalah 36π cm². Hitunglah kelilingnya!


Sebelum menemukan keliling, kita harus mencari jari-jarinya (r). Setelah menemukan r, barulah kita bisa menghitung keliling.



Mencari jari-jari (r)

Diketahui pada soal :
  • Luas = 36π cm²

Masukkan luas yang diketahui ke dalam rumus luas lingkaran.

Luas = πr²

  • Ganti luas dengan 36π

36π = πr²

  • Kita bisa mencoret phi (π)
36π = π

36 = r²

  • Akarkan 36 untuk mendapatkan r

r = √36

r = 6 cm



Mencari keliling lingkaran

Ok...
Jari-jari sudah ditemukan dan sekarang kita bisa dengan mudah mendapatkan keliling yang diminta pada soal.

Keliling = 2πr

Ingat rumus di atas ya!!

Keliling = 2πr

Keliling = 2×π×r

  • r = 6 (hasil perhitungan di atas)

Keliling = 2×π×6

  • phi dibiarkan

Keliling = 12π cm.




Soal :

2. Carilah keliling lingkaran jika diketahui luasnya 12π cm²!


Kita cari dulu jari-jarinya (r)


Mencari jari-jari (r)

Data soal :

  • Luas = 12π cm²

Langsung masukkan ke rumus luas.

Luas = πr²

  • Luas = 12π

12π = πr²

  • Phi bisa dicoret di masing-masing ruas

12π = π

12 = r²

  • Akarkan 12 untuk mendapatkan r

r = √12

Nah...
Jari-jari (r) tidak bisa diakarkan, terus apa yang dilakukan??

Kita ubah.

r = √12
r = √(4×3)

  • 4 dan 3 masing-masing mendapatkan akar

r = √4 × √3

  • √4 = 2
  • √3 dibiarkan karena tidak bisa diakarkan lagi.

r = 2×√3
r = 2√3 cm


Mencari keliling lingkaran

Karena r sudah diketahui, kelilingnya bisa dihitung dengan mudah.

Keliling = 2πr
Keliling = 2×π×r

  • r = 2√3

Keliling = 2×π×2√3
Keliling = 4π√3 cm.


Hasil dengan akar berbeda

Jika dilihat hasil dari kedua soal tersebut, terlihat ada perbedaan. Yang pertama hasilnya bulat sempurna tanpa ada akar, sedangkan yang kedua hasilnya ada akar.

Ya jelas, karena yang kedua jari-jarinya tidak bisa diperoleh bilangan bulat. Mengingat 12 tidak bisa diakarkan.

Jadi jangan bingung jika bertemu dengan soal seperti itu ya!!

Harus diingat bagaimana cara memecah akar, sehingga diperoleh bentuk lain yang lebih umum digunakan dalam matematika.

Contohlah √12.

Ini bisa diubah menjadi bentuk lain, yaitu 2√3. 
Lihat lagi cara pengubahannya seperti di atas ya.

Gunakanlah bentuk seperti ini, biasanya sering digunakan dalam perhitungan. Mengingat bentuk akarnya jauh lebih kecil.
Sehingga mudah dihitung.


Baca juga ya :

Sebuah persegi panjang ukurannya 7x cm dan 4x cm. Hitunglah keliling dan luasnya!

Soalnya terlihat aneh?
Tidak juga...

persegi panjang

Mungkin karena kehadiran variabel "x", yang membuat soalnya terasa kurang familiar. Tapi dengan mengikuti rumusnya, kita bisa mendapatkan jawabannya kok.

Rumus keliling dan luas persegi panjang

Ok...
Ini adalah rumus dari keliling dan luas persegi panjang.

Keliling = 2p + 2l
Luas = p×l

Keterangan :
  • p = panjang 
  • l = lebar

Contoh soal

Sekarang kita coba soalnya.

Soal :

1. Sebuah persegi panjang ukurannya 7x cm dan 4x cm. Hitunglah keliling dan luasnya!


Dalam soal diketahui :
  • panjang (p) = 7x
  • lebar (l) = 4x
Gambar perseginya seperti di bawah




Keliling

Yang pertama dicari adalah kelilingnya.

Keliling = 2p + 2l
Keliling = 2(7x) + 2(4x)

  • ganti p dengan 7x
  • ganti l dengan 4x
  • 2(7x) artinya 2 dikali dengan 7x
  • 2(4x) artinya 2 dikali dengan 4x

Keliling = 14x + 8x
Keliling = 22x cm



Luas

Luas = p×l

  • ganti p = 7x
  • ganti l = 4x

Luas = 7x × 4x
Luas = 28x² cm²

Cara mengalikannya adalah :
  • Kalikan angka dengan angka, yaitu 7 dengan 4, hasilnya 28.
  • Selanjutnya kalikan x dengan x, hasilnya adalah x²
  • Satuan luas selalu ada kuadratnya, yaitu cm².



Biarkan dalam bentuk "x"

Hasil dari keliling dan luasnya kita biarkan dalam bentuk "x". 
Mengapa?
Karena nilai x tidak diketahui.

Jadi jangan bingung.

Masukkan saja nilai panjang dan lebar yang diketahui, walaupun ada variabelnya. Tidak usah dipikirkan terlalu lama.
Biasanya soal seperti ini digunakan sebagai jebakan saja, agar kita bingung.

Jangan terpancing ya!!


Soal :

2. Carilah keliling dan luas dari persegi panjang yang ukurannya 8a cm dan 6a cm!


Caranya masih sama dengan soal pertama, yang berubah hanyalah hurufnya, sekarang menggunakan "a".



Keliling

Diketahui pada soal :
  • panjang (p) = 8a
  • lebar (l) = 6a
Masukkan data tersebut ke dalam rumus keliling.

Keliling = 2p + 2l
Keliling = 2(8a) + 2(6a)

  • 2(8a) artinya 2 dikali dengan 8a
  • 2(6a) artinya 2 dikali dengan 6a

Keliling = 16a + 12a
Keliling = 28a cm




Luas

Langsung masukkan panjang dan lebar persegi panjang ke dalam rumus luas.

Luas = p×l

  • ganti p dengan 8a
  • ganti l dengan 6a

Luas = 8a × 6a

  • kalikan 8 dengan 6 = 48
  • kalikan a dengan a = a²
  • gabungkan keduanya sehingga menjadi 48a²

Luas = 48a² cm²

Nah...
Itulah luas dan kelilingnya.

Selamat mencoba ya!!


Baca juga ya :

Mencari keliling segitiga sama kaki diketahui panjang alas dan salah satu kakinya

Nah...
Kali ini kita akan membahas soal tentang cara mencari keliling segitiga, terutama segitiga sama kaki.



Untuk segitiga sama kaki, kita harus mengetahui sifat-sifatnya, sehingga bisa mengerjakan soal dengan baik.


Soal :

1. Suatu segitiga sama kaki memiliki panjang alas 12 cm dan panjang salah satu kakinya 18 cm. Hitunglah kelilingnya!


Ok...
Mari kita tengok dulu bentuk segitiga sama kaki.

Sesuai namanya, segitiga ini memiliki dua kaki yang sama panjang. Nah, inilah konsep atau pengertian yang harus dipahami.

Biasanya, dua kaki yang sama panjang itu akan ditandai dengan coretan pendek. Seperti gambar di bawah, kaki yang sama panjang itu ditandai dengan dua garis hitam pendek.

Nah...
Paham ya??





Menjawab soal

Sekarang kitapun bisa mencari keliling segitiganya.
Masih menggunakan gambar di atas.

Dalam soal diketahui :
  • panjang alas = 12 cm
  • tinggi salah satu kakinya = 18 cm
  • tinggi kaki yang lain = 18 cm

Ingat!!
Segitiga sama kaki memiliki dua kaki yang sama. 

Jika salah satu kaki 18 cm, maka kaki yang lain juga 18 cm.
Sekarang, kita sudah memiliki panjang ketiga sisi segitiganya.
Kelilingpun bisa dicari.

Keliling = 12 + 18 + 18

  • Untuk mencari keliling, jumlahkan ketiga sisi segitiga.

Keliling = 48 cm.



Soal :

2. Panjang alas segitiga samakaki adalah 8 cm dan panjang salah satu kakinya 13 cm, maka kelilingnya adalah...


Masih menggunakan cara yang sama dengan soal pertama.


Data dari soal :
  • panjang alas = 8 cm
  • panjang salah satu kakinya 13 cm
  • maka panjang kaki yang lainnya pasti 13 cm juga.

Ingat!
Ada dua garis yang mendapatkan coretan garis hitam pada gambar di atas. Itu artinya kedua garis itu sama panjang.

Jika salah satu diketahui 13 cm, maka garis yang lain pastilah 13 cm juga.



Mencari keliling

Kelilingnya sekarang bisa dihitung dengan mudah.

Keliling = 8 + 13 + 13
Keliling = 34 cm.


Ingat konsepnya ya!

Jebakan yang sering diberikan adalah hanya diketahui panjang salah satu kaki segitiga sama kakinya.
Bagi yang tidak mengerti pastilah bingung.

Nah...
Ingat lagi konsep atau pemahamannya.



1. Segitiga sama kaki memiliki dua kaki yang sama panjang
2. Biasanya kedua kaki ini ditandai coretan garis pendek
3. Ketika salah satu diketahui panjangnya, maka kaki yang lainnya pasti memiliki panjang yang sama


Tolong ingat konsep ini, sehingga tidak bingung lagi ketika berjumpa dengan model soal yang sama.
Semoga membantu ya...


Baca juga ya :