Showing posts with label Perbandingan. Show all posts
Showing posts with label Perbandingan. Show all posts

Selisih uang Ani dan Nita adalah 5000. Jika perbandingan Ani dan Nita 5 : 3, berapakah uang mereka masing-masing?

Ada beberapa cara untuk menjawab soal ini dan di sini akan diberikan alternatif pilihan untuk menjawabnya.


Soal

Berikut adalah soalnya.


Soal :

1. Selisih uang Ani dan Nita adalah 5000. Jika perbandingan uang Ani dan Nita 5 : 3, berapakah uang mereka masing-masing?


Ok, mari kita kerjakan.
Gunakan perbandingan biasa.

Diketahui :
  • Perbandingan Ani dan Nita = 5 : 3
  • Perbandingan Ani = 5
  • Perbandingan Nita = 3
  • Selisih uang = 5000


Mencari uang Ani

Perhatikan rumusnya untuk mendapatkan uang Ani.



Jika ingin mencari uang Ani, maka perbandingan Ani diletakkan paling atas. Terus di bawahnya perbandingan yang diketahui.
Perbandingan yang diketahui adalah pengurangan atau selisih dari dua perbandingan yang ada.

Mengapa di kurang perbandingannya?
Karena uang yang diketahui adalah selisih uang keduanya, jadi perbandingan harus dikurangkan juga.

Uang yang diketahui adalah selisih uangnya, yaitu 5000.

Hasilnya uang Ani adalah 12.500.



Mencari uang Nita

Masih menggunakan rumus yang sama, tetapi perbandingan di atas adalah perbandingan Nita.



Sekarang gunakan perbandingan Nita karena uang Nita yang ingin dicari.
Perbandingan Nita adalah 3.

Perbandingan diketahui adalah pengurangan dari dua perbandingan yang diketahui, yaitu 5-3. Karena pada soal diketahui selisih uangnya, yaitu 5000.

Hasilnya adalah 7500.

Jadi, itulah caranya.
Uang Ani = 12500
Uang Nita = 7500

Cara kedua

Soal di atas juga bisa dituntaskan dengan cara berikut, yaitu menggunakan permisalan. Langkahnya seperti di bawah.

Perbandingan Ani dan Nita = 5 : 3

Berarti :
  • Perbandingan Ani = 5
  • Perbandingan Nita = 3
Untuk mencari uang sebenarnya dari mereka berdua, tambahkan variabel atau huruf "x" di belakang setiap perbandingan.

Jadi...
  • Perbandingan Ani = 5
    Uang Ani sesungguhnya = 5x
  • Perbandingan Nita = 3
  • Uang Nita sesungguhnya = 3x


Mencari nilai x

Pada soal diketahui bahwa :
  • Selisih uang mereka adalah 5000
Ini artinya :

Uang Ani - uang Nita = 5000
  • Ganti uang Ani = 5x
  • Ganti uang Nita = 3x

5x - 3x = 5000

2x = 5000
  • Untuk mendapatkan x, bagi 5000 dengan 2
x = 5000 ÷ 2

x = 2500



Mencari uang masing-masing

Kita sudah mendapatkan nilai x, sekarang bisa dicari uang masing-masing.

Uang Ani = 5x
Uang Ani = 5×x
  • x = 2500
Uang Ani = 5×2500
Uang Ani = 12500


Cari uang Nita

Uang Nita = 3x
Uang Nita = 3×x
  • x = 2500
Uang Nita = 3×2500
Uang Nita = 7500

Hasilnya :
Uang Ani = 12500
Uang Nita = 7500

Jawabannya sama dengan cara pertama.
Bagaimana, sudah mengerti?
Selamat belajar ya dan semoga membantu!


Baca juga ya :

Membuat 20 kue perlu 5 kg tepung. Berapa tepung diperlukan untuk membuat 40 kue?

Ada beberapa cara untuk menemukan jawaban soal ini. Kita akan bahas beberapa dan bisa dipilih cara mana yang lebih disukai.


Soal

Ini soalnya.

Soal :

1. Untuk membuat 20 kue diperlukan tepung 5 kg. Berapa kg tepung yang diperlukan untuk membuat 40 kue?


Kita coba cara pertama.
Lihat data pada soal :
  • 20 kue memerlukan tepung 5 kg
Dari sini, kita bisa mencari banyaknya kue yang bisa dibuat dari 1 kg tepung.

20 kue → 5 kg

Berarti 1 kg tepung bisa membuat kue sebanyak :
  • Bagi banyak kue dengan banyak tepung
= 20 kue ÷ 5 tepung
= 4 kue untuk 1 kg tepung.
= 4 kue/kg



Mencari banyak tepung untuk 40 kue


Dari perhitungan di atas diperoleh 1 kg tepung bisa membuat 4 kue.

Jika ingin membuat 40 kue, maka tepung yang diperlukan adalah :

= 40 kue : 4 kue/kg

= 10 kg

Jadi...
Diperlukan 10 kg tepung untuk membuat 40 kue.

Inilah cara pertama.
Bagaimana, sudah dimengerti?

Cara kedua

Kita gunakan perbandingan.
  • 20 kue → 5 kg
  • 40 kue → n kg

Karena banyaknya tepung untuk membuat 40 kue belum diketahui, misalkan saja dengan "n" atau huruf lain juga boleh.

Perhatikan bentuk ini :
  • 20 kue → 5 kg
  • 40 kue → n kg
Menyusun bentuk ini tidak boleh terbalik.
Jika kue ada di kiri tanda panah, maka kue di bawahnya juga ada di kiri tanda panah. Lihat tulisan warna merah.

Karena di sebelah kiri untuk kue, maka di kanan tanda panah untuk "kg". 

Setelah itu kita bisa membuat bentuk seperti ini.


  • Tinggal di isi per (buat bentuk pecahan) pada bagian kanan dan kiri.
Selanjutnya :
  • Untuk menghilangkan bentuk pecahan, kalikan silang
  • Kalikan 20 dengan n
  • Kalikan 5 dengan 40
20×n = 5×40

20×n = 200
  • Untuk mendapatkan n, bagi 200 dengan 20
n = 200 ÷ 20

n = 10 kg.

Nah...
Diperlukan 10 kg tepung untuk membuat 40 kue.
Mudah bukan?

Cara ketiga

Cara ini bisa dibilang cara singkat untuk mempercepat mencari jawaban. Perhatikan langkah-langkahnya, mirip dengan cara kedua.

Data soal :
  • 20 kue dibuat dari 5 kg tepung
  • 40 kue dibuat dari n kg tepung


Perhatikan gambar di atas.
  • 20 kue agar menjadi 40 kue harus dikali 2
  • Sehingga untuk menemukan n, kita tinggal kalikan 5 dengan 2 juga.
n = 5×2

n = 10 kg.

Jadi...
Diperlukan 10 kg tepung untuk membuat 40 kue.

Itulah tiga cara untuk mendapatkan banyaknya tepung yang diperlukan untuk membuat kue dalam jumlah tertentu.
Selamat belajar dan semoga membantu ya!


Baca juga ya :

Untuk membuat 30 kue diperlukan 6 kg tepung. Berapa tepung yang diperlukan untuk membuat 100 kue?

Ini adalah soal perbandingan dan ada dua cara utama untuk mendapatkan jawabannya. Caranya sangat mudah lho.

Ayo kita kerjakan.




Soal

Ok...
Kita langsung ke contoh soalnya saja ya. Di sana akan dijelaskan secara detil bagaimana mendapatkan jawabannya.


Soal :

1. Untuk membuat 30 kue diperlukan 6 kg tepung. Berapakah tepung yang diperlukan untuk membuat 100 kue?


Kita bisa mengerjakan soalnya dengan dua cara.


Cara pertama

Kita kerjakan berdasarkan data yang ada pada soal.
  • Untuk membuat 30 kue diperlukan 6 kg tepung
Nah...
Dari sini kita bisa cari dulu berapa kue yang dihasilkan dari 1 kg tepung.

30 kue → 6 kg tepung
  • Untuk mendapatkan banyaknya kue yang dihasilkan dari 1 kg tepung, maka kita bagi 30 dengan 6
  • Mengapa dibagi 6?
    Karena 6 adalah angka dari banyaknya tepung yang diperlukan. Agar 6 kg menjadi 1 kg, kita harus membaginya dengan 6.
    Sehingga 30 kue juga harus dibagi 6.
30 kue = 6 kg tepung

³⁰∕₆ kue = ⁶∕₆ kg tepung

5 kue = 1 kg tepung

Diperoleh 1 kg tepung bisa membuat 5 kue.



Sekarang datanya adalah :
  • 1 kg tepung → 5 kue
Berarti untuk membuat 100 kue, kita harus membagi 100 kue dengan banyaknya tepung yang dihasilkan 1 kg tepung.

Banyak tepung yang diperlukan = 100 kue ÷ 5 kue
Banyak tepung yang diperlukan = 20 kg tepung

Jadi...
Banyak tepung yang diperlukan untuk membuat 100 kue adalah 20 kg.



Cara kedua

Ok...
Sekarang kita gunakan cara perbandingan.

Dari soal diketahui data :
  • 30 kue → 6 kg tepung
  • 100 kue → n kg tepung
Kita misalkan yang 100 kue banyak tepung yang diperlukan adalah n. 
  • 30 kue → 6 kg tepung
  • 100 kue → n kg tepung
Tetapi sebelum membuat perbandingan, perhatikan triknya.
Untuk bagian kiri harus dikumpulkan yang sejenis. Kalau kue, maka dibawahnya juga kue ya!
Lihat yang diwarna coklat.

Jangan diatasnya kue dibawahnya tepung.
Itu hasilnya salah nanti.

Bentuk di atas bisa dibuat menjadi perbandingan seperti di bawah.

  • Perhatikan perbandingan di atas, bagian kiri atas bawahnya kue
  • Sedangkan bagian kanan atas bawahnya banyaknya tepung dalam kg
Selanjutnya kita bisa hilangkan tulisan kue dan tepung untuk mempermudah perhitungan.

Langkah jitunya adalah :
  • Melakukan perkalian silang untuk menghilangkan bentuk pecahan.
  • Jadi kalikan silang 30 dengan n
  • Kalikan silang 100 dengan 6

30×n = 6×100

30n = 600
  • Untuk mendapatkan n, maka 600 harus dibagi dengan 30
n = 600 ÷ 30

n = 20 kg

Jadi...
Banyaknya tepung yang diperlukan untuk membuat 100 kue adalah 20 kg.

Hasilnya sama dengan cara pertama ya.


Soal :

2. Demi menempuh jarak 45 km diperlukan bahan bakar 3 liter. Berapakah jarak yang ditempuh jika ada 5 liter bahan bakar?


Masih menggunakan cara yang sama dengan soal pertama. Soal ini bisa dikerjakan dengan dua cara.



Cara pertama

Data pada soal :
  • 45 km ditempuh dengan 3 liter
Berarti kita cari dulu 1 liter bisa menempuh berapa km.

1 liter = 45 km ÷ 3 liter
1 liter = 15 km

Untuk bahan bakar 1 liter bisa menempuh jarak 15 km.



Sekarang ditanya berapa jarak yang ditempuh oleh 5 liter bahan bakar.

1 liter bisa 15 km

Untuk 5 liter jarak tempuhnya adalah
= 5 liter × 15 km
= 75 km

Nah...
Jika ada 5 liter bahan bakar, jarak yang bisa ditempuh adalah 75 km.



Cara kedua

Tulis semua data seperti di bawah :
  • 45 km → 3 liter
  • n km → 5 liter
Perhatikan...
Yang di bagian kiri kita tulis dengan jarak tempuhnya berapa km ya.
Atas km bawah juga harus km. Jangan sampai tercampur dengan liter.

Sedangkan di bagian kanan atas dan bawahnya adalah liter.

Bentuk di atas bisa diubah menjadi perbandingan.


Sekarang terapkan trik cepatnya, yaitu perkalian silang.
  • Kalikan 45 dengan 5
  • Kalikan 3 dengan n
45×5 = 3×n

225 = 3n
  • Untuk mendapatkan n, bagi 225 dengan 3
n = 225 ÷ 3
n = 75 km

Jadi...
Dengan 5 liter bahan bakar bisa menempuh jarak 75 km.

Itulah caranya.
Semoga membantu ya...


Baca juga ya :

Perbandingan buku A dan B adalah 3 : 1. Jika A memiliki 28 lebih banyak, berapakah banyak buku masing-masing?

Jika diketahui memiliki buku lebih banyak atau lebih sedikit, ada konsep menarik di sini. Konsep ini membuat perhitungan menjadi lebih cepat.


Konsep

Ok...
Kita masuk ke konsep soalnya dulu.

Dalam soal ada kalimat kunci "memiliki 28 lebih banyak".
Ini artinya apa?

28 adalah selisih buku mereka.

Nah...
Ketika tahu bahwa itu selisihnya, mengerjakan soal perbandingan jauh lebih cepat.

Jelas ya?
Nanti kita akan gunakan dua cara, yaitu cara biasa dan cara "n".
Silahkan pilih mana yang lebih disukai.

Contoh soal

Soalnya sebagai berikut.


Soal :

1. Perbandingan buku A : B adalah 3 : 1. Jika A memiliki buku 28 lebih banyak, berapakah buku masing-masing?


Diketahui :
  • Perbandingan A : B = 3 : 1
  • Buku A 28 lebih banyak dari buku B

Cara pertama

Cara yang pertama adalah menggunakan cara biasa yang diajarkan di sekolah. Yaitu membandingkan yang dicari dengan yang diketahui.

  • Buku A 28 lebih banyak dari B.
  • Ini artinya selisih buku keduanya adalah 28.

Berarti yang diketahui pada soal ini adalah selisih bukunya, yaitu 28.
  • Kemudian, karena diketahui selisih, perbandingannya juga dicari selisihnya
  • Perbandingannya dikurangkan
  • Selisih perbandingan = 3 - 1
    = 2.
Ingat ya!
Perbandingan A : B = 3 : 1
  • Perbandingan A = 3
  • Perbandingan B = 1


Mencari buku masing-masing

Jadi...
Kita sudah mendapatkan data penting.
  • Buku yang diketahui adalah selisih = 28
  • Perbandingan yang diketahui adalah selisihnya juga, yaitu mengurangkan perbandingan A dan B, 3-1 = 2



Jadi, rumusnya seperti di atas.
  • Kita mau mencari banyak buku A, berarti tulis perbandingan A di bagian atas atau pembilang
  • Untuk perbandingan diketahui, adalah selisihnya. jadi kurangkan kedua perbandingan
  • Buku yang diketahui adalah selisihnya, jadi kita kalikan dengan selisih buku


  • 2 dan 28 disederhanakan, sama-sama dibagi 2
Dan kita mendapatkan banyak buku A, yaitu 42.




Sekarang mencari buku B.




  • Perbandingan yang dicari adalah perbandingan B, nanti diganti 1
  • Perbandingan diketahui adalah selisihnya, karena pada soal diketahui banyak selisih buku
  • Selisih buku tetap 28



Nah...
Kitapun mendapatkan buku B sebanyak 18.

Jadi...
Kita sudah mendapatkan banyak buku masing-masing.
Buku A = 42
Buku B = 14.




Cara kedua → Cara "n"

Cara ini agak sedikit berbeda, mari kita lihat.

Perbandingan A : B = 3 : 1
Artinya :
  • Perbandingan A = 3, banyak buku A sebenarnya adalah 3n
  • Perbandingan B = 1, banyak buku B sebenarnya adalah 1n

Inilah yang dimaksud cara "n", yaitu menambahkan "n" disetiap perbandingan yang ada



Mencari "n"

Kita cari "n" dulu.

Diketahui pada soal, selisih bukunya 28.
Ingat!
Selisih ini artinya sama dengan 28 buku lebih banyak.

Selisih buku = 28
Buku A - buku B = 28

  • Buku A = 3n
  • Buku B = 1n

Buku A - buku B = 28

3n - 1n = 28
  • 3n - 1n = 2n

2n = 28

  • Untuk mendpatkan n, bagi 28 dengan 2

n = 28 ÷ 2
n = 14.


Mencari buku masing-masing

Nilai "n" sudah diperoleh, sekarang kita bisa mendapatkan buku masing-masing.

Banyak buku A.
Buku A = 3n
Buku A = 3×n
  • n = 14 (dari hasil perhitungan di atas)
Buku A = 3×14
Buku A = 42


Banyak buku B.
Buku B = 1n
Buku B = 1×n
  • n = 14
Buku B = 1×14
Buku B = 14


Jadi...
Buku A = 42
Buku B = 14

Hasilnya sama dengan cara pertama bukan?
Silahkan pilih mana yang lebih disukai.



Baca juga ya :

Perbandingan umur A : B : C = 1 : 2 : 3. Jika jumlah umur ketiganya 48 tahun. Berapa umur masing-masing?

Untuk soal perbandingan, kita harus menentukan apa yang diketahui dulu. Kemudian, barulah bisa menghitung yang ditanyakan.



Soal :

1. Perbandingan umur A : B : C = 1 : 2 : 3. Jika jumlah ketiga umur mereka 48 tahun, berapa umur mereka masing-masing?


Mari kita cek datanya :
Perbandingan A : B : C = 1 : 2 : 3, ini artinya :

  • Perbandingan A = 1
  • Perbandingan B = 2
  • Perbandingan C = 3

Dan diketahui :
  • Jumlah umur ketiganya = 48
  • Berarti jumlahkan juga perbandingan ketiganya = 1 + 2 + 3 = 6
  • Inilah yang akan digunakan untuk menjawab pertanyaan.



Mencari umur A


Rumus yang digunakan adalah :



Yang diketahui adalah umur ketiganya, yaitu 48.
Sehingga perbandingan yang diketahui adalah jumlah perbandingan ketiganya, yaitu :
= 1 + 2 + 3
= 6

Karena itulah perbandingan yang diketahui = 6.




Mencari umur B


Langkahnya sama, tetapi perbandingan yang digunakan adalah perbandingan B.



Perbandingan diketahui tetap 6 ya!
Karena soalnya masih sama.



Mencari umur C


Sekarang kita cari umur C dengan menggunakan perbandingan C.




Semuanya sudah kita dapatkan jawabannya.

Umur A = 8 tahun
Umur B = 16 tahun
Umur C = 24 tahun.


Baca juga ya :

Perbandingan a : b = 3 : 5. Jika a = 51, berapakah nilai b?

Untuk soal perbandingan seperti ini, kita bisa menggunakan prinsip perkalian silang yang sangat memudahkan perhitungan.



Soal :

1. Perbandingan a : b = 3 : 5. Jika a = 51, berapakah nilai b?


Dalam soal diketahui :

  • a : b = 3 : 5
  • a = 51

Kita bisa buat bentuk perbandingannya seperti ini.



  • Sekarang ganti a dengan 51.


  • Kalikan silang
  • Kalikan 51 dengan 5, kalikan 3 dengan b



  • Untuk mendapatkan b, maka 51 x 5 harus dibagi dengan 3.
  • 51 jangan dulu dikali dengan 5.
  • Kita sederhanakan saja biar perkalian lebih kecil, sehingga perhitungan lebih cepat.



  • 51 bisa dibagi 3, hasilnya 17.
  • Sedangkan 3 menjadi 1.

Diperoleh hasilnya, b = 85.



Cara kedua


Di atas adalah cara pertama dan masih ada alternatif lain untuk menuntaskan soalnya, yaitu cara kedua ini.

Saya sebut dengan cara "n".

Perbandingan a : b = 3 : 5
Ini artinya :

  • Perbandingan a = 3, maka nilai a sebenarnya adalah 3n
  • Perbandingan b = 5, maka nilai b sebenarnya adalah 5n

Inilah mengapa disebut dengan cara "n", karena tinggal menambahkan "n" disetiap perbandingan yang ada.

Kemudian, dalam soal diketahui nilai a = 51.

Sehingga :

a = 51

  • a = 3n

3n = 51

  • Untuk mendapatkan n, bagi 51 dengan 3

n = 51 ÷ 3

n = 17.






Nilai "n" sudah diperoleh dan sekarang kita bisa mencari nilai "b".

b = 5n

b = 5 × n

b = 5 × 17

b = 85.


Nah...
Hasilnya sama dengan cara pertama, diperoleh nilai b = 85.



Baca juga :

3 lliter bensin menempuh 35 km. Jika ada 9 liter bensin, jarak yang bisa ditempuh adalah?

Ini adalah bentuk soal perbandingan dan termasuk ke dalam perbandingan senilai. Bagaimana cara menentukannya?
Kita bahas sekarang.



Soal :

1. Sebanyak 3 liter bensin mampu menempuh jarak 35 km. Jika ada 9 liter bensin, berapakah jarak yang bisa ditempuh?


Soal ini termasuk perbandingan senilai.

Karena, dengan jumlah bensin yang bertambah, maka jarak yang bisa ditempuh juga bertambah. Sehingga perbandingannya senilai.

Kita tulis seperti ini...

3 liter → 35 km
9 liter →  n


  • Misalkan "n" karena belum diketahui nilainya berapa.

Untuk membuat perbandingannya sangatlah mudah, ikuti bentuk di atas dan buat seperti ini.



Cara membandingkan adalah :

  • Bandingkan liter dengan liter
  • Bandingkan km dengan km
  • Jangan bandingkan liter dengan km, nanti salah.

Satuannya bisa dihilangkan dan kita hitung.


  • 3 dan 9 sama-sama dibagi 3
  • Kalikan silang, 1 dikali dengan n, 35 dikali dengan 3


Diperoleh nilai n = 105 km

Jadi...
Jika ada 9 liter bensin, maka jarak yang bisa ditempuh adalah 105 km.




Soal :

2. Sebuah motor dengan 2 liter bensin sanggup menempuh jarak 77 km. Jika motornya diisi 4 liter bensin, jarak yang ditempuh adalah?


Masih menggunakan cara yang sama, kita buat dulu data yang diketahui.


2 liter → 77 km
4 liter →  n


  • Misalkan "n" karena belum diketahui nilainya berapa.

Langsung buat dalam bentuk perbandingan.



  • Sederhanakan 2 dan 4, sama-sama dibagi 2
  • Kalikan silang 1 dan n, 77 dan 2



Jadi, jarak yang ditempuh adalah 154 km.


Baca juga ya :