Showing posts with label Perbandingan. Show all posts
Showing posts with label Perbandingan. Show all posts

Perbandingan buku A dan B adalah 3 : 1. Jika A memiliki 28 lebih banyak, berapakah banyak buku masing-masing?

Jika diketahui memiliki buku lebih banyak atau lebih sedikit, ada konsep menarik di sini. Konsep ini membuat perhitungan menjadi lebih cepat.


Konsep

Ok...
Kita masuk ke konsep soalnya dulu.

Dalam soal ada kalimat kunci "memiliki 28 lebih banyak".
Ini artinya apa?

28 adalah selisih buku mereka.

Nah...
Ketika tahu bahwa itu selisihnya, mengerjakan soal perbandingan jauh lebih cepat.

Jelas ya?
Nanti kita akan gunakan dua cara, yaitu cara biasa dan cara "n".
Silahkan pilih mana yang lebih disukai.

Contoh soal

Soalnya sebagai berikut.


Soal :

1. Perbandingan buku A : B adalah 3 : 1. Jika A memiliki buku 28 lebih banyak, berapakah buku masing-masing?


Diketahui :
  • Perbandingan A : B = 3 : 1
  • Buku A 28 lebih banyak dari buku B

Cara pertama

Cara yang pertama adalah menggunakan cara biasa yang diajarkan di sekolah. Yaitu membandingkan yang dicari dengan yang diketahui.

  • Buku A 28 lebih banyak dari B.
  • Ini artinya selisih buku keduanya adalah 28.

Berarti yang diketahui pada soal ini adalah selisih bukunya, yaitu 28.
  • Kemudian, karena diketahui selisih, perbandingannya juga dicari selisihnya
  • Perbandingannya dikurangkan
  • Selisih perbandingan = 3 - 1
    = 2.
Ingat ya!
Perbandingan A : B = 3 : 1
  • Perbandingan A = 3
  • Perbandingan B = 1


Mencari buku masing-masing

Jadi...
Kita sudah mendapatkan data penting.
  • Buku yang diketahui adalah selisih = 28
  • Perbandingan yang diketahui adalah selisihnya juga, yaitu mengurangkan perbandingan A dan B, 3-1 = 2



Jadi, rumusnya seperti di atas.
  • Kita mau mencari banyak buku A, berarti tulis perbandingan A di bagian atas atau pembilang
  • Untuk perbandingan diketahui, adalah selisihnya. jadi kurangkan kedua perbandingan
  • Buku yang diketahui adalah selisihnya, jadi kita kalikan dengan selisih buku


  • 2 dan 28 disederhanakan, sama-sama dibagi 2
Dan kita mendapatkan banyak buku A, yaitu 42.




Sekarang mencari buku B.




  • Perbandingan yang dicari adalah perbandingan B, nanti diganti 1
  • Perbandingan diketahui adalah selisihnya, karena pada soal diketahui banyak selisih buku
  • Selisih buku tetap 28



Nah...
Kitapun mendapatkan buku B sebanyak 18.

Jadi...
Kita sudah mendapatkan banyak buku masing-masing.
Buku A = 42
Buku B = 14.




Cara kedua → Cara "n"

Cara ini agak sedikit berbeda, mari kita lihat.

Perbandingan A : B = 3 : 1
Artinya :
  • Perbandingan A = 3, banyak buku A sebenarnya adalah 3n
  • Perbandingan B = 1, banyak buku B sebenarnya adalah 1n

Inilah yang dimaksud cara "n", yaitu menambahkan "n" disetiap perbandingan yang ada



Mencari "n"

Kita cari "n" dulu.

Diketahui pada soal, selisih bukunya 28.
Ingat!
Selisih ini artinya sama dengan 28 buku lebih banyak.

Selisih buku = 28
Buku A - buku B = 28

  • Buku A = 3n
  • Buku B = 1n

Buku A - buku B = 28

3n - 1n = 28
  • 3n - 1n = 2n

2n = 28

  • Untuk mendpatkan n, bagi 28 dengan 2

n = 28 ÷ 2
n = 14.


Mencari buku masing-masing

Nilai "n" sudah diperoleh, sekarang kita bisa mendapatkan buku masing-masing.

Banyak buku A.
Buku A = 3n
Buku A = 3×n
  • n = 14 (dari hasil perhitungan di atas)
Buku A = 3×14
Buku A = 42


Banyak buku B.
Buku B = 1n
Buku B = 1×n
  • n = 14
Buku B = 1×14
Buku B = 14


Jadi...
Buku A = 42
Buku B = 14

Hasilnya sama dengan cara pertama bukan?
Silahkan pilih mana yang lebih disukai.



Baca juga ya :

Perbandingan umur A : B : C = 1 : 2 : 3. Jika jumlah umur ketiganya 48 tahun. Berapa umur masing-masing?

Untuk soal perbandingan, kita harus menentukan apa yang diketahui dulu. Kemudian, barulah bisa menghitung yang ditanyakan.



Soal :

1. Perbandingan umur A : B : C = 1 : 2 : 3. Jika jumlah ketiga umur mereka 48 tahun, berapa umur mereka masing-masing?


Mari kita cek datanya :
Perbandingan A : B : C = 1 : 2 : 3, ini artinya :

  • Perbandingan A = 1
  • Perbandingan B = 2
  • Perbandingan C = 3

Dan diketahui :
  • Jumlah umur ketiganya = 48
  • Berarti jumlahkan juga perbandingan ketiganya = 1 + 2 + 3 = 6
  • Inilah yang akan digunakan untuk menjawab pertanyaan.



Mencari umur A


Rumus yang digunakan adalah :



Yang diketahui adalah umur ketiganya, yaitu 48.
Sehingga perbandingan yang diketahui adalah jumlah perbandingan ketiganya, yaitu :
= 1 + 2 + 3
= 6

Karena itulah perbandingan yang diketahui = 6.




Mencari umur B


Langkahnya sama, tetapi perbandingan yang digunakan adalah perbandingan B.



Perbandingan diketahui tetap 6 ya!
Karena soalnya masih sama.



Mencari umur C


Sekarang kita cari umur C dengan menggunakan perbandingan C.




Semuanya sudah kita dapatkan jawabannya.

Umur A = 8 tahun
Umur B = 16 tahun
Umur C = 24 tahun.


Baca juga ya :

Perbandingan a : b = 3 : 5. Jika a = 51, berapakah nilai b?

Untuk soal perbandingan seperti ini, kita bisa menggunakan prinsip perkalian silang yang sangat memudahkan perhitungan.



Soal :

1. Perbandingan a : b = 3 : 5. Jika a = 51, berapakah nilai b?


Dalam soal diketahui :

  • a : b = 3 : 5
  • a = 51

Kita bisa buat bentuk perbandingannya seperti ini.



  • Sekarang ganti a dengan 51.


  • Kalikan silang
  • Kalikan 51 dengan 5, kalikan 3 dengan b



  • Untuk mendapatkan b, maka 51 x 5 harus dibagi dengan 3.
  • 51 jangan dulu dikali dengan 5.
  • Kita sederhanakan saja biar perkalian lebih kecil, sehingga perhitungan lebih cepat.



  • 51 bisa dibagi 3, hasilnya 17.
  • Sedangkan 3 menjadi 1.

Diperoleh hasilnya, b = 85.



Cara kedua


Di atas adalah cara pertama dan masih ada alternatif lain untuk menuntaskan soalnya, yaitu cara kedua ini.

Saya sebut dengan cara "n".

Perbandingan a : b = 3 : 5
Ini artinya :

  • Perbandingan a = 3, maka nilai a sebenarnya adalah 3n
  • Perbandingan b = 5, maka nilai b sebenarnya adalah 5n

Inilah mengapa disebut dengan cara "n", karena tinggal menambahkan "n" disetiap perbandingan yang ada.

Kemudian, dalam soal diketahui nilai a = 51.

Sehingga :

a = 51

  • a = 3n

3n = 51

  • Untuk mendapatkan n, bagi 51 dengan 3

n = 51 ÷ 3

n = 17.






Nilai "n" sudah diperoleh dan sekarang kita bisa mencari nilai "b".

b = 5n

b = 5 × n

b = 5 × 17

b = 85.


Nah...
Hasilnya sama dengan cara pertama, diperoleh nilai b = 85.



Baca juga :

3 lliter bensin menempuh 35 km. Jika ada 9 liter bensin, jarak yang bisa ditempuh adalah?

Ini adalah bentuk soal perbandingan dan termasuk ke dalam perbandingan senilai. Bagaimana cara menentukannya?
Kita bahas sekarang.



Soal :

1. Sebanyak 3 liter bensin mampu menempuh jarak 35 km. Jika ada 9 liter bensin, berapakah jarak yang bisa ditempuh?


Soal ini termasuk perbandingan senilai.

Karena, dengan jumlah bensin yang bertambah, maka jarak yang bisa ditempuh juga bertambah. Sehingga perbandingannya senilai.

Kita tulis seperti ini...

3 liter → 35 km
9 liter →  n


  • Misalkan "n" karena belum diketahui nilainya berapa.

Untuk membuat perbandingannya sangatlah mudah, ikuti bentuk di atas dan buat seperti ini.



Cara membandingkan adalah :

  • Bandingkan liter dengan liter
  • Bandingkan km dengan km
  • Jangan bandingkan liter dengan km, nanti salah.

Satuannya bisa dihilangkan dan kita hitung.


  • 3 dan 9 sama-sama dibagi 3
  • Kalikan silang, 1 dikali dengan n, 35 dikali dengan 3


Diperoleh nilai n = 105 km

Jadi...
Jika ada 9 liter bensin, maka jarak yang bisa ditempuh adalah 105 km.




Soal :

2. Sebuah motor dengan 2 liter bensin sanggup menempuh jarak 77 km. Jika motornya diisi 4 liter bensin, jarak yang ditempuh adalah?


Masih menggunakan cara yang sama, kita buat dulu data yang diketahui.


2 liter → 77 km
4 liter →  n


  • Misalkan "n" karena belum diketahui nilainya berapa.

Langsung buat dalam bentuk perbandingan.



  • Sederhanakan 2 dan 4, sama-sama dibagi 2
  • Kalikan silang 1 dan n, 77 dan 2



Jadi, jarak yang ditempuh adalah 154 km.


Baca juga ya :

Mencari nilai x dari perbandingan 3/4 = 9/x

Ketika bertemu dengan bentuk soal seperti ini, sangatlah mudah menemukan jawabannya. Ada dua cara yang bisa dicoba.



Soal :

1. Hitunglah nilai x pada persamaan berikut :




Kita coba untuk cara yang pertama..


Cara pertama

Yang digunakan adalah cara perbandingan..
Berikut caranya..



Perhatikan :

  • Pecahan dibagian kiri dan bagian kanan yang sama-sama diketahui angkanya adalah bagian pembilang (angka dibagian atas)
  • Untuk pecahan dikiri angka yang diketahui 3
  • Untuk pecahan dikanan angka yang diketahui 9.

Kita tidak bisa menggunakan angka yang ada dibawah (penyebut), yaitu angka 4 dan x. Ini karena nilai x belum diketahui.


Kemudian :
  • 3 agar menjadi 9 harus dikali dengan 3 → (×3)
  • Jika pembilang dikali 3, maka penyebut harus dikali 3 juga.
  • Sehingga, 4 harus dikali dengan 3.

Akhirnya kita temukan :

x = 4×3

x = 12.


Jadi, nilai yang diharapkan adalah 12.



Cara kedua

Sekarang perhatikan lagi soalnya..


Bentuk seperti ini bisa diakali dengan mengalikan silang.

Maksudnya gimana?
Artinya seperti ini :

  • 3 dikali dengan x
  • 4 dikali dengan 9.

Itulah maksud mengalikan silang.


Kita lanjutkan lagi..
Sehingga soal diatas menjadi :

3 × x = 9 × 4

3x = 36

  • Untuk mendapatkan x, bagi 36 dengan 3

x = 36 ÷ 3

x = 12.


Nah, hasilnya sama bukan??
Nilai x = 12.




Soal :

2. Hitunglah nilai a pada persamaan berikut :




Misalnya gunakan cara pertama seperti soal nomor 1.



Perhatikan diatas :

  • Pecahan kiri dan kanan yang diketahui kedua angkanya adalah dibagian bawah, yaitu penyebutnya.
  • Sebelah kiri diketahui 5 dan sebelah kanan diketahui 25.


Kita tidak bisa menggunakan angka yang diatas, yaitu 2 dan a. Karena "a" tidak diketahui nilainya.



Kemudian :

  • 5 agar menjadi 25 harus dikali 5.
  • Sehingga, angka dibagian atas, juga harus dikali 5
  • 2 harus dikali dengan 5 agar menjadi "a" 

a = 2 × 5

a = 10.


Jadi, nilai a = 10.



Baca juga :

Anak yang tingginya 1 meter memiliki bayangan 0,5m. Bayangan pohon yang tingginya 4 meter adalah?

Memecahkan soal seperti ini, bisa menggunakan bantuan dari perbandingan. Kitapun mudah menemukan jawabannya..


Mari kita kerjakan...


Soal :

1. Seorang anak tingginya 1 meter dan bayangannya 0,5 meter. Jika sebuah pohon ditempat yang sama tingginya 4 meter, berapa meterkah bayangan pohon itu?


Perhatikan gambar dibawah ini..




Keterangan :

  • Anak tingginya 1 meter
  • Bayangan anak (warna hijau) = 0,5 meter
  • Tinggi pohon = 4 meter

Bayangan pohon belum diketahui dan inilah yang harus dicari...



Rumus perbandingan


Rumus yang digunakan sebenarnya sangat mudah dan tidak repot untuk dihafalkan. Lengkapnya seperti ini..



Bisa juga dibalik :

  • bayangan anak dibagi tinggi anak = bayangan pohon dibagi tinggi pohon

Perhatikan juga :
  • jika tinggi anak diatas (pembilang), maka tinggi pohon juga diatas (pembilang)
  • jika bayangan anak dibawah (penyebut), maka bayangan pohon juga dibawah (penyebut)

Jangan dibalik ya posisinya.




Menghitung bayangan pohon


Masukkan data yang diketahui ke dalam rumus..

Pastikan satuannya sudah sama semua. Kita buat saja dalam meter. Jika semua sudah sama, bisa langsung dihitung. Tidak boleh langsung dihitung jika satuannya berbeda ya!!




  • Jika bentuknya sudah begini, kalikan silang saja.
  • Kalikan 1 dengan x
  • kalikan 4 dengan 0,5

  • 1 dikali x = x
  • 4 dikali 0,5 = 2

Sehingga diperoleh x = 2.

Itulah bayangan pohonnya, yaitu 2 meter.



Soal :

2. Seorang anak tingginya 1,8 meter dan saat yang sama pohon setinggi 6 meter memiliki bayangan 2 meter.

Berapakah panjang bayangan anak itu?


Masih menggunakan rumus yang sama..



Data yang diketahui :

  • tinggi anak = 1,8 meter
  • tinggi pohon = 6 meter
  • panjang bayangan pohon 2 meter




Menghitung bayangan anak


Masukkan data ke dalam rumus..




  • Kalikan silang


  • Untuk mendpatkan x, bagi 3,6 dengan 6


Jadi, panjang bayangan anak adalah 0,6 meter atau 60 cm.



Baca juga :

Perbandingan umur A : B : C = 1 : 2 : 3. Jika jumlah umur A dan B 36 tahun, berapa umur mereka masing-masing?

Kita akan menggunakan cara "n" untuk menemukan umur masing-masing berdasarkan data yang sudah diketahui.



Soal :

1. Perbandingan umur A : B : C = 1 : 2 : 3. Jika jumlah umur A dan B adalah 36 tahun, berapakah umur mereka masing-masing?


Berikut adalah langkah-langkahnya..



Menambahkan "n" disetiap perbandingan


Inilah yang disebut dengan cara "n", yaitu menambahkan n disetiap perbandingan sehingga diperoleh nilai sebenarnya atau umur sebenarnya dari A, B dan C.

Perhatikan lagi!!

  • Perbandingan A = 1, umur sebenarnya adalah 1n atau ditulis "n" saja.
  • Perbandingan B = 2, umur sebenarnya adalah 2n
  • Perbandingan C = 3, umur sebenarnya adalah 3n

Jadi, langsung ditambahkan "n" disetiap perbandingan.

2n artinya 2 dikali n. Begitu juga 3n, artinya 3 dikali n






Mendapatkan nilai "n"


Sekarang kita bisa menghitung nilai "n" dari data yang sudah ada.

Diketahui :

  • Jumlah umur A dan B = 36 tahun

Kita akan gunakan ini untuk mendapatkan nilai "n".

Jumlah umur A dan B = 36 tahun, 
Bisa ditulis seperti ini..

A + B = 36
  • A = n
  • B = 2n

n + 2n = 36

3n = 36

  • untuk mendapatkan nilai "n", bagi 36 dengan 3

n = 36 ÷ 3

n = 12.




Menghitung umur masing-masing


Yes..
Nilai "n" sudah diperoleh dan sekarang kita bisa dengan mudah menghitung umur masing-masing.

Diatas sudah mendapatkan nilai "n = 12" dan ini digunakan untuk mengganti setiap "n" pada perhitungan dibawah


Umur A = n
Umur A = 12 tahun

Umur B = 2n
Umur B = 2 × n
Umur B = 2 × 12
Umur B = 24 tahun

Umur C = 3n
Umur C = 3 × n
Umur C = 3 × 12
Umur C = 36 tahun


Jadi umur ketiganya sudah diperoleh.

Umur A = 12 tahun

Umur B = 24 tahun

Umur C = 36 tahun


Baca juga :