Showing posts with label Garis Lurus. Show all posts
Showing posts with label Garis Lurus. Show all posts

Diketahui garis melalui titik (2,3) dan (1,p) dengan gradien 2. Hitunglah nilai p!

Kita akan membutuhkan rumus gradien ketika diketahui dua buah titik. Nanti dengan pengubahan, nilai p bisa diperoleh.


Rumus

Nah...
Kita lihat dulu rumus apa yang digunakan untuk mencari gradien jika diketahui dua buah titik.



Keterangan :
  • m = gradien
  • x₁ = nilai x dari koordinat pertama
  • x₂ = nilai x dari koordinat kedua
  • y₁ = nilai y dari koordinat pertama
  • y₂ = nilai y dari koordinat kedua

Untuk lebih jelasnya, lihat pada contoh soal di bawah ya!!

Soal

Ok...
Setelah mengetahui rumus apa yang digunakan, sekarang kita bisa menghitung apa yang ditanyakan pada soal.

Soal :

1. Sebuah garis melewati titik (2,3) dan (1,p) dengan gradien 2. Hitunglah nilai p!


Tulis dulu yang diketahui :
  • Gradien (m) = 2
  • titik pertama = (2,3)
  • titik kedua = (1,p)


Menentukan masing-masing x dan y

Lihat titik pertama, yaitu (2,3).
Maka :
  • x₁ = 2
  • y₁ = 3

Lihat titik kedua, yaitu (1,p)
  • x₂ = 1
  • y₂ = p

Ok...
Jelas kan cara menentukan masing-masing nilai x dan y-nya??




Menghitung nilai p

Sekarang kita sudah memiliki data lengkapnya :

  • x₁ = 2
  • y₁ = 3
  • x₂ = 1
  • y₂ = p
  • m = 2

Masukkan ke dalam rumus



  • Untuk memudahkan perhitungan, kalikan silang
  • 2 dikalikan dengan -1
  • Sedangkan p-3 tetap karena tidak ada  kawan untuk perkalian silang



  • Pindahkan -3 ke ruas kiri sehingga tandanya berubah menjadi +3



Nah...
Akhirnya kita mendapatkan nilai p, yaitu 1.
Seperti itulah langkah-langkahnya.



Soal :

2. Sebuah garis lurus yang memiliki gradien 3, melewati titik (-1, 4) dan (b,-2). Berapakah nilai b?


Data yang ada pada soal :
  • Gradien (m) = 3
  • titik pertama = (-1,4)
  • titik kedua = (b,-2)


Menentukan masing-masing x dan y

Titik pertama (-1,4).
Maka :
  • x₁ = -1
  • y₁ = 4

Titik kedua (b,-2)
  • x₂ = b
  • y₂ = -2



Menghitung nilai p

Data pada soal sekarang menjadi :

  • x₁ = -1
  • y₁ = 4
  • x₂ = b
  • y₂ = -2
  • m = 3

Hitung ke dalam rumus.




Kalikan silang antara 3 dengan b+1
Sedangkan (-2-4) diamkan saja.




  • 3×(b+1), semua yang ada di dalam kurung dikali dengan 3
  • 3×b = 3b
  • 3×1 = 3
  • Itulah cara membuka kurungnya ya

Kemudian :
  • Pindahkan +3 ke ruas kanan menjadi -3
Untuk mendapatkan b, bagi -9 dengan 3

Nah...
Kitapun mendapatkan nilai b, yaitu -3.


Baca juga ya :

Langkah-langkah menggambar grafik 2x + y - 8 = 0

Untuk mendapatkan grafik dari sebuah garis lurus, kita hanya perlu menentukan titik potong di sumbu x dan y.

Mari kita kerjakan.!!


Soal :

1. Buatlah grafik dari persamaan garis 2x + y - 8 = 0!


Berikut adalah langkah-langkahnya.
  • Cari titik potong di sumbu x
  • Cari titik potong di sumbu y
  • Hubungkan kedua titiknya

Itulah ringkasan tahapan menggambar grafik garis lurus.


Mencari titik potong di sumbu x


Triknya :
Untuk mendapatkan titik potong di sumbu x, maka y harus dibuat 0.
y = 0.

Sehingga titik awalnya adalah (x,y) = (... , 0)
Titik-titik atau nilai x yang harus dicari dulu.

Buat persamaannya lagi.

2x + y - 8 = 0

  • Ganti y dengan nol
  • Untuk mendapatkan nilai x, ingat y harus dibuat nol

2x + 0 - 8 = 0

2x - 8 = 0

  • pindahkan -8 ke ruas kanan menjadi +8

2x = 8

  • untuk mendapatkan x, bagi 8 dengan 2

x = 8 ÷ 2

x = 4


Di atas kita masih kehilangan titik x
(x,y) = (... ,0)

Sekarang ganti x dengan 4 sesuai hasil perhitungan.

(x,y) = (4,0).

Langsung letakkan titiknya di bidang koordinat.





Mencari titik potong di sumbu y


Trik.
Buat nilai x = 0

Kebalikan dari langkah pertama, untuk mendapatkan titik potong di sumbu y, maka x harus dibuat nol.

Titik yang dicari adalah (x,y) = (0, ...)
Titik-titiknya kita hitung dengan cara di bawah.

Tulis lagi persamaannya.

2x + y - 8 = 0

  • ganti x dengan 0

2.0 + y - 8 = 0

0 + y - 8 = 0

y - 8 = 0

  • pindahkan -8 ke ruas kanan menjadi +8

y = 8

Sekarang titik lengkapnya adalah (x,y) = (0, ...)
Ganti titik-titik dengan 8.

(x,y) = (0,8)

Gambarnya seperti di bawah





Membuat garis lurusnya


Dua titik potong di sumbu x dan y sudah ditemukan dan sekarang kita tinggal menghubungkan garis yang melewati kedua titik tersebut.



Nah...
Sudah selesai.

Itulah grafik dari persamaan garis 2x + y - 8 = 0.
Ingat langkah-langkahnya ya, pasti bisa menyelesaikan soal sejenis.

Kesimpulan

Setelah melihat contoh soal di atas, pastinya anda sudah mengerti kan cara membuat grafik garis lurus yang diketahui persamaannya?

Langkahnya seperti di bawah ini :
  • Menentukan titik potong di sumbu x, dengan membuat y = 0
  • Menentukan titik potong di sumbu y, dengan membuat x = 0

Kita hanya perlu menemukan dua titik ini saja, setelah itu hubungkan garisnya dan selesailah pembuatan grafiknya.
Mudah kan?

Masih penasaran?

Agar semakin memahami konsep pembuatan grafik garis lurus, ada baiknya berlatih beberapa soal. Kalau bisa lebih banyak soal.
Sehingga kita semakin mengerti alur kerja dari soalnya.

Nanti, ketika bertemu dengan soal baru, sudah tahu apa yang harus dilakukan.

Jadi pede kan jawab soalnya.

Matematika memang perlu banyak latihan dan latihan. Jangan puas dengan satu soal saja, cobalah soal yang lain.
Jika sudah selesai, coba soal yang lain lagi.

Nah...
Pasti tambah nempel deh konsepnya di pikiran.

Coba satu soal lagi

Ini...
Coba deh satu soal lagi...

Soal :

2. Gambarlah grafik garis y = 2x - 6 pada bidang koordinat!


Caranya sama dengan soal pertama.
Tentukan dulu titik potong di sumbu x dan y.

Kali ini gambarnya saya jadikan satu saja, tidak dipisah seperti soal di atas.



Mencari titik potong di sumbu x


Lihat persamaan garisnya.
y = 2x - 6

Untuk mendapatkan titik potong di sumbu x, apa yang harus dilakukan?
Membuat "y" sama dengan nol.

Ganti y dengan 0

y = 2x - 6
  • ganti y dengan 0

0 = 2x - 6

  • Sekarang pindahkan 2x ke ruas kiri, sehingga tandanya berubah menjadi -2x

-2x = -6

  • Untuk mendapatkan x, maka -6 harus dibagi dengan angka di depan x, yaitu -2

x = -6 ÷ (-2)

x = 3


Nah, titik potong di sumbu x sudah diperoleh.
x = 3 untuk y = 0.

Sehingga titiknya (x,y) = (3,0)



Mecari titik potong di sumbu y


Ini kebalikan dari langkah di atas. Untuk mendapatkan titik potong di sumbu y, maka yang dibuat nol adalah x.
x = 0.

Buat persamaan garisnya dulu.

y =  2x - 6

  • ganti x = 0

y = 2.0 - 6

y = 0 - 6

y = -6

Sip...
Sudah ketemu.

Ketika x = 0, maka nilai "y" yang diperoleh adalah -6.
Sehingga titiknya (x,y) = (0,-6).




Membuat garis lurusnya


Kita sudah mendapatkan dua titik yang dibutuhkan untuk membuat sebuah garis lurus pada bidang koordinat.
Titiknya yaitu :
  • (x,y) = (3,0)
  • (x,y) = (0,-6)

Gambarnya seperti di bawah ini ya.



Kedua titiknya sudah ditempatkan pada posisinya dan hubungkan sehingga diperoleh garis y = 2x - 6. Inilah tampilannya pada grafik.
Semoga membantu ya.

Baca juga ya :

Persamaan garis x + 2y = 7 dilalui oleh titik (1, a+1). Berapakah nilai a?

Menyelesaikan soal seperti ini, kita hanya perlu mengetahui yang mana nilai x dan nilai y, kemudian masukkan ke dalam rumus persamaan garis.


Ok, kita coba soalnya..


Soal :

1. Persamaan garis x + 2y = 7 dilalui oleh titik (1, a+1). Berapakah nilai dari a?


Dari soal sudah diketahui dua data :

  • persamaan garis x + 2y = 7
  • dan dilalui titik (1, a+1)



Menentukan nilai x dan y


Ada titik (1, a+1) yang melalui garis tersebut. Ini artinya kita bisa menggunakan titik ini untuk mendapatkan nilai dari x dan y.

Titik (1, a+1) artinya :

  • x = 1
  • y = a + 1

Ingat ya!!
"x" selalu ditulis lebih dulu pada titik koordinat kemudian diikuti dengan "y". Tanda koma (,) yang menjadi pemisah x dan y.

Sekarang kita bisa dengan mudah menemukan nilai "a"



Mencari nilai a


Setelah nilai x dan y diketahui, sekarang kita bisa mencari nilai "a".
Masukkan nilai x dan y ini ke persamaan garis yang ada.

x + 2y = 7

ganti :
  • x = 1
  • y = a+1

x + 2y = 7

1 +2.(a+1) = 7
  • untuk membuka kurung 2(a+1), kalikan 2 dengan a, hasilnya 2a
  • terus kalikan 2 dengan 1, hasilnya 2

1 + 2a + 2 = 7

3 + 2a = 7
  • pindahkan +3 ke ruas kanan sehingga berubah menjadi -3

2a = 7 - 3

2a = 4
  • untuk mendapatkan a, bagi 4 dengan 2
a = 4 : 2

a = 2.


Jadi nilai "a" yang kita cari adalah 2.




Soal :

2. Persamaan garis  x + 3y = 7, hitunglah nilai "a" jika garis itu dilalui oleh titik (a-6, a-1)!


Data dari soal :

  • persamaan garis x + 3y = 7
  • dan dilalui titik (a-6, a-1)



Menentukan nilai x dan y


Titik  yang melalui garis adalah (a-6, a-1), ini artinya :

  • x = a-6
  • y = a-1

Ingat ya!!
"x" selalu ditulis lebih dulu pada titik koordinat kemudian diikuti dengan "y". Tanda koma (,) yang menjadi pemisah x dan y.




Mencari nilai a


Langkah selanjutnya adalah memasukkan nilai "x" dan "y" yang sudah diketahui diatas ke dalam persamaan garis.

x + 3y = 7

ganti :
  • x = a-6
  • y = a-1

x + 3y = 7

a-6 +3.(a-1) = 7
  • untuk membuka kurung 3(a-1), kalikan 3 dengan a, hasilnya 3a
  • terus kalikan 3 dengan -1, hasilnya -3
a-6 +3a - 3 = 7

4a - 9 = 7
  • pindahkan -9 ke ruas kanan menjadi +9

4a = 7 + 9

4a = 16
  • untuk mendapatkan a, bagi 16 dengan 4

a = 16 : 4

a = 4


Jadi nilai a = 4.



Baca juga ya :

Persamaan garis dengan gradien (m) = 1/4 dan melewati titik (1,2) adalah...

Karena sudah diketahui gradien dan satu titik yang dilewatinya, maka kita tinggal menggunakan rumus dibawah untuk mendapatkan persamaan garisnya.


Berikut adalah soalnya.


Soal :

1. Persamaan garis yang memiliki gradien (m) = ¼ dan melewati titik (1,2) adalah...


Yang diketahui pada soal :

  • gradien (m) = ¼
  • titik (1,2)



Menghitung persamaan garisnya


Kita akan menggunakan rumus dibawah untuk mendapatkan persamaan garis yang ditanyakan pada soal.

y - y₁ = m(x - x₁)

Karena melewati titik (1,2), maka kita bisa mendapatkan data :

  • x₁ = 1
  • y₁ = 2

Masukkan datanya ke dalam rumus :

y - y₁ = m(x - x₁)

y - 2 = ¼ (x - 1)

  • untuk menghilangkan bentuk pecahan, kalikan 4 semua suku yang ada pada rumus, baik pada ruas kanan atau kiri.
  • mengapa dikali 4?
    karena penyebut dari pecahan ¼ adalah 4. Jadi harus dikali sesuai dengan penyebut yang ada.

4×y - 4×2 = 4×¼ (x - 1)

4y - 8 = 1(x - 1)

4y - 8 = (x-1)

4y - 8 = x - 1

  • pindahkan 4y ke ruas kiri menjadi -4y
  • pindahkan -1 ke ruas kanan menjadi +1

-8 + 1 = x - 4y

-7 = x - 4y

atau

x - 4y = -7

atau :

  • pindahkan -7 ke ruas kiri menjadi +7

x - 4y + 7 = 0


Jadi, itulah persamaan garis yang dimaksud :
  • x - 4y = -7
  • atau x - 4y + 7 = 0



Soal :

2. Persamaan garis yang memiliki gradien (m) = ⅓ dan melewati titik (-2,3) adalah...


Data pada soal :
  • gradien (m) = ⅓
  • titik (-2,3)



Menghitung persamaan garisnya


Titik yang dilewati adalah (-2,3)

  • x₁ = -2
  • y₁ = 3

Masukkan datanya ke dalam rumus :

y - y₁ = m(x - x₁)

y - 3 = ⅓ (x - (-2))

y - 3 = ⅓ (x+2)

  • karena penyebutnya 3, maka kalikan semua suku yang ada pada persamaan diatas dengan 3.

3×y - 3×3 = 3×⅓(x +2)

3y - 9 = (x+2)

3y - 9 = x + 2

  • pindahkan +2 ke ruas kiri menjadi -2
  • pindahkan 3y ke ruas kanan menjadi -3y

-9 - 2 = x - 3y

-11 = x - 3y

atau :
  • pindahkan -11 ke ruas kanan menjadi + 11

0 = x - 3y + 11

Bisa ditulis juga :

x - 3y + 11 = 0

Jadi persamaan garisnya adalah :

  • x - 3y = -11
  • x - 3y + 11 = 0

Baca juga ya :

Jika titik (a,3a) melewati garis y = 2x + 2, berapakah titik itu sebenarnya?

Kita hanya menentukan titik mana yang sebagai x dan y, kemudian memasukkan titik tersebut ke dalam rumus persamaan garis.

Selesai..


Nah, perhatikan cara yang disajikan pada pembahasan soal dibawah dan pastinya sangat mudah diikuti..


Soal :

1. Jika titik (a,3a) melewati garis y = 2x + 2, berapakah titik itu sebenarnya?


Yang diketahui pada soal adalah :

  • titik (a,3a) yang melewati garis y = 2x + 2



Menentukan x dan y


Kita gunakan titik yang diketahui, titik (a,3a). Ini artinya :

  • x = a
  • y = 3a

Untuk titik pada sebuah koordinat, "x" selalu berada di depan dan "y" selalu berada dibelakang.


Sekarang kita lanjutkan perhitungannya dengan memasukkan nilai "x" dan "y" ini ke dalam persamaan garis lurus.



Menghitung nilai "a"


Persamaan garisnya : y = 2x + 2

Ganti x dan y dengan titik yang sudah diperoleh diatas :

  • x = a
  • y = 3a

y = 2x + 2

3a = 2.a + 2

3a = 2a + 2
  • pindahkan 2a ke ruas kiri menjadi -2a

3a - 2a = 2

a = 2

Nah, sekarang kita sudah menemukan nilai "a".




Mencari titik sebenarnya


Nilai "a" sudah diketahui dan sekarang kita bisa dengan mudah menemukan titik sebenarnya yang diketahui pada soal.

Titiknya adalah (a,3a)

x = a

x = 2


Kemudian..

y = 3a

y = 3.2

y = 6.


Sehingga titik sebenarnya adalah (x,y) = (2,6).



Soal :

2. Jika titik (a,½a) melewati garis y = -2x + 5, berapakah titik itu sebenarnya?


Data pada soal :
  • titik (a,½a) yang melewati garis y = -2x + 5



Menentukan x dan y


Titik yang diketahui : (a,½a)

  • x = a
  • y = ½a 



Menghitung nilai "a"


Persamaan garisnya : y = -2x + 5

Masukkan nilai x dan y yang sudah diketahui :

  • x = a
  • y = ½a

½a = -2.a+ 5

½a = -2a+ 5
  • pindahkan -2a ke ruas kiri menjadi +2a

½a + 2a = 5
  • 2a dijadikan pecahan biar sama penyebutnya dengan ½
  • 2a menjadi ⁴∕₂a

½a + ⁴∕₂a = 5

⁵∕₂a = 5
  • untuk mendapatkan "a", bagi 5 dengan ⁵∕₂

a = 5 : ⁵∕₂
  • Jika dibagi dengan pecahan, tanda bagi bisa diubah menjadi kali
  • kemudian, angka pada pecahan ditukar bagian pembilang dan penyebutnya.

a = 5 × ²∕₅

a = 2.


Mencari titik sebenarnya


Titiknya adalah (a,½a)

x = a

x = 2


Kemudian..

y = ½a

y = ½.2

y = ½ × 2

y = 1.


Jadi, titik yang dimaksud adalah (x,y) = (2,1).


Baca juga ya :

Titik (2,1) Terletak Pada Garis : y = 2x - m. Berapakah Nilai "m"?

Untuk mendapatkan nilai "m", nilai yang belum diketahui pada persamaan garis yang ditanyakan, caranya sangatlah mudah..


Sekarang kita bahas dengan tuntas..


Soal :

1. Titik (2,1) terletak pada garis y = 2x - m. Berapakah nilai dari "m"?


Apa yang diketahui pada soal?

  • Titik (2,1) melewati garis y = 2x - m.



Menentukan nilai x dan y


Titik yang melewati garisnya adalah titik (2,1).

Titik (2,1) artinya :

  • x = 2
  • y = 1

Ingat ya!!
Untuk sebuah titik koordinat, maka nilai "x" berada di depan dan "y" dibelakangnya.




Mencari nilai "m"


Untuk mendapatkan nilai "m", kita masukkan nilai x dan y yang sudah diketahui ke dalam persamaan garis pada soal.

Diketahui :

  • x = 2
  • y = 1

Masukkan nilai x dan y ke dalam persamaan garis.

y = 2x - m
  • x = 2
  • y = 1
y = 2×x - m

  • 2x artinya 2 dikali dengan x


1 = 2×2 - m

1 = 4 - m
  • pindahkan "-m" ke ruas kiri menjadi "+m"
  • pindahkan 1 ke ruas kanan menjadi -1

m = 4 - 1

m = 3


Jadi nilai "m" yang dicari adalah 3.





Soal :

2. Persamaan garis "mx - y = 4" melalui titik (3,2). Berapakah nilai dari "m"?




Menentukan nilai x dan y


Garis dilalui oleh titik (3,2)
Titik (3,2) artinya :

  • x = 3
  • y = 2

Ingat ya!!
Untuk sebuah titik koordinat, maka nilai "x" berada di depan dan "y" dibelakangnya.




Mencari nilai "m"


Sekarang tinggal ganti saja nilai dari "x" dan "y" pada persamaan garis dan akhirnya kita bisa menghitung nilai "m".


Masukkan nilai x dan y ke dalam persamaan garis.

mx - y = 4
  • x = 3
  • y = 2

m.3 - 2 = 4

3m - 2 = 4
  • pindahkan -2 ke ruas kanan menjadi +2

3m = 4 + 2

3m = 6
  • Untuk mendapatkan m, bagi 6 dengan 3

m = 6 : 3

m = 2.


Baca juga ya :

Titik (a,9) Berada Pada Garis y = 3x + 3. Berapakah Nilai "a"?

Untuk menuntaskan soal seperti ini, kita hanya perlu menentukan mana nilai x atau y, kemudian masukkan ke rumus persamaan garisnya dan selesai..



Soal :

1. Titik (a,9) berada pada garis y = 3x + 3.
Berapakah nilai "a"?


Titik yang diketahui melewati garis diatas adalah (a,9), maka :

  • "a" adalah sebagai "x"
  • "9" adalah sebagai "y"

"x" selalu terletak di depan dan "y" selalu terletak di belakang.


Jadi, dari titik diatas kita sudah mendapatkan nilai x dan y :

  • x = a
  • y = 9 


Sekarang masukkan nilai x dan y ke rumus persamaan garis yang diketahui.

Persamaan garis :

y = 3x + 3

  • ganti x = a
  • ganti y = 9

9 = 3a + 3
  • pindahkan +3 ke ruas kiri menjadi -3

9 - 3 = 3a

6 = 3a
  • untuk mendapatkan "a", bagi 6 dengan 3

a = 6 : 3

a = 2


Sehingga nilai "a" diperoleh 2.





Soal :

2. Titik (4,b) berada pada garis y = 2x - 10.
Berapakah nilai "b"?



Titik yang melewati garisnya adalah (4,b), sehingga :

  • x = 4
  • y = b

Ingat ya!!
"x" selalu terletak di depan dan "y" selalu terletak di belakang.




Sekarang masukkan nilai x dan y ke rumus persamaan garis yang diketahui.

Persamaan garisnya :

y = 2x - 10

  • x = 4
  • y = b

b = 2.4 - 10

b = 2×4 - 10

b = 8 - 10

b = -2


Jadi, diperoleh nilai b = -2




Baca juga ya :