Showing posts with label Gradien. Show all posts
Showing posts with label Gradien. Show all posts

Gradien garis lurus 2 melewati titik (1,3) dan (a,7). Hitunglah nilai a!

Rumus gradien dengan dua buah titik sangat membantu kita dalam menyelesaikan soal ini. Dengan pengubahan sedikit, nilai a bisa diperoleh.


Nanti perhatikan cara-caranya!
Akan diperlihatkan bagaimana mengubah seuatu persamaan sehingga mendapatkan nilai a yang kita inginkan.

Konsep soal

Sebelum masuk ke soalnya, sekarang kita lihat dulu rumus dan bagaimana penerapannya secara sekilas. 

Untuk gradien yang diketahui dua buah titik, maka rumusnya seperti di bawah.




Keterangan :
  • m = gradien
  • x₁ = nilai x dari koordinat pertama
  • x₂ = nilai x dari koordinat kedua
  • y₁ = nilai y dari koordinat pertama
  • y₂ = nilai y dari koordinat kedua

Untuk penentuan x dan y, kita lihat pada pembahasan soal.

Data-data yang diketahui dimasukkan ke dalam rumus dan ubah bentuknya sehingga mendapatkan nilai a yang diharapkan.

Soal pertama

Ok...
Mari kita coba soalnya.

Soal :

1. Sebuah garis lurus memiliki gradien 2 yang melewati titik (1,3) dan (a,7). Tentukanlah nilai a!


Data dulu apa yang diketahui pada soal :
  • Gradien (m) = 2
  • Titik pertama = (1,3)
  • Titik kedua = (a,7)


Menentukan nilai x dan y

Kita lihat titik yang diketahui.
Pertama titik (1,3)
Kedua titik (a,7)

Dari kedua titik ini, kita bisa menentukan masing-masing x dan y.


Sehingga :
  • x₁ = 1
  • x₂ = a
  • y₁ = 3
  • y₂ = 7
Bagaimana, sudah paham sampai di sini?



Mencari nilai a

Setelah semua data diketahui, sekarang masukkan ke dalam rumus.
Data lengkapnya adalah :
  • x₁ = 1
  • x₂ = a
  • y₁ = 3
  • y₂ = 7
  • m = 2



Kemudian :
  • Agar perhitungan lebih mudah, kalikan silang antara 2 dan (a-1)
  • Sedangkan 4 tetap karena tidak ada kawan untuk perkalian silang


  • Mengalikan 2 dan (a-1), maka semua suku yang ada di dalam kurung harus dikalikan dengan 2 yang ada di luar kurung


  • -2 dipindah ke ruas kanan sehingga menjadi +2
  • Untuk mendapatkan a, maka 6 harus dibagi dengan 2

Akhirnya kita mendapatkan a = 3.

Jadi seperti itulah cara mendapatkan nilai a jika diketahui gradien dan dua buah titik. Perhatikan lagi cara-caranya agar semakin paham ya.

Soal kedua

Baik...
Kita coba lagi soal berikutnya untuk menambah pemahaman.


Soal :

2. Garis lurus melewati titik (4,a) dan (5,3) dengan gradien -1. Carilah nilai a yang memenuhi!


Masih menggunakan cara yang sama seperti soal pertama. Catat dulu data yang diketahui pada soal.
  • Gradien (m) = -1
  • Titik pertama = (4,a)
  • Titik kedua = (5,3)


Menentukan nilai x dan y

Dari dua titik yang diketahui, kita bisa menentukan masing-masing x dan y-nya.
Titik pertama = (4,a)
Titik kedua = (5,3)



Sehingga :
  • x₁ = 4
  • x₂ = 5
  • y₁ = a
  • y₂ = 3
Itulah nilai dari masing-masing x dan y.




Mencari nilai a

Selanjutnya kita bisa mencari nilai a menggunakan data yang sudah tersedia.


  • Masukkan masing-masing x dan y
  • Gradien ganti dengan -1


  • 3-a per 1 sama dengan 3-a dibagi 1
    Hasilnya 3-a


  • Pindahkan -a ke ruas kiri sehingga menjadi +a
  • Pindahkan -1 ke ruas kanan sehingga menjadi +1

Diperoleh a = 4.

Itulah nilai a yang kita mau, yaitu 4.

Baca juga ya :

Diketahui gradien (m) = -3 dan persamaan garisnya 2y + kx = 4. Berapa nilai k?

Masih ingat cara mencari gradien jika diketahui persamaan garisnya?
Kalau bingung, ada baiknya baca dulu di sini ya:


Setelah memahami lagi caranya, barulah kita masuk ke dalam soal untuk mencari jawaban yang diminta.

Soal pertama


Soal:

1. Diketahui gradien (m) = -3 dan persamaan garisnya 2y+kx = 4. Berapakah nilai k?


Ok...
Mari kita ubah dulu persamaan garisnya agar diperoleh gradien.



Mengubah persamaan garis

Persamaan garisnya adalah:
2y + kx = 4

  • Ingat!
    Hanya suku yang mengandung y ada di ruas kiri.
  • Suku selain itu harus dipindah ke ruas kanan
  • Jadi kita pindah +kx ke ruas kanan, sehingga tandanya berubah menjadi -kx
2y = -kx + 4
  • 4 tidak pindah karena sudah di ruas kanan
  • Karena tidak ada tanda minus di depan angka 4, itu artinya sama dengan +4.
Selanjutnya:
  • Angka di depan y harus 1
  • Sekarang ada angka 2 di depan y.
  • Jadi, bagi semua suku dengan angka di depan y, yaitu dibagi 2.


  • Semua suku harus dibagi 2, baik yang di kanan atau yang di kiri.
Setelah y hanya ada angka 1 di depannya, 1y = y, maka gradien adalah angka di depan x.
Sehingga m = -k/2.



Mencari nilai k

Nah...
Kita sudah mendapatkan gradien dalam bentuk k
  • m = -k/2
  • Dalam soal juga diketahui m = -3.
Kedua m ini nilainya sama, jadi kita buat ke dalam persamaan.


  • 2 dikalikan silang dengan -3 (untuk menghilangkan bentuk pecahan).
  • Agar k positif, maka kalikan dengan -1
    -6 di ruas kanan juga harus dikali dengan -1
Dan kitapun mendapat k = 6.

Inilah jawaban yang dicari.
k = 6.



Soal kedua


Soal:

2. Dari persamaan garis 9 - ay = 6x, gradiennya adalah 2. Carilah nilai a!


Ayo...
Coba soal selanjutnya, biar lebih paham lagi dengan soal semacam ini.



Mengubah persamaan garis

Langkah pertama, ubah dulu persamaan garisnya untuk mendapatkan gradien (m).

9 - ay = 6x
  • Pindahkan suku selain y ke ruas kanan
  • Berarti 9 dipindah ke ruas kanan dan tandanya berubah menjadi -9
- ay = 6x - 9
  • Tanda minus di depan ay masih tetap ya.
  • Sekarang y harus hanya ada angka 1 saja di depannya.
  • Saat ini ada -a di depan y, berarti semua suku harus dibagi dengan -a.




Karena y sudah sendiri, hanya ada angka 1 di depannya, 1y = y, maka gradien adalah angka di depan x.
Gradien (m) = -6/a




Mencari nilai a

Kita sudah mendapatkan dua bentuk gradien.
  • m = 2
  • m = -6/a
Samakan kedua.


  • Kalikan silang antara 2 dan a untuk menghilangkan bentuk pecahan
  • Untuk mendapatkan a, bagi -6 dengan 2
Sehingga diperoleh a = -3.

Ok...
Itulah caranya mendapatkan nilai k atau nilai a dari suatu persamaan yang diketahui gradiennya.
Semoga membantu ya.

Baca juga ya:

Diketahui garis melalui titik (2,3) dan (1,p) dengan gradien 2. Hitunglah nilai p!

Kita akan membutuhkan rumus gradien ketika diketahui dua buah titik. Nanti dengan pengubahan, nilai p bisa diperoleh.


Rumus

Nah...
Kita lihat dulu rumus apa yang digunakan untuk mencari gradien jika diketahui dua buah titik.



Keterangan :
  • m = gradien
  • x₁ = nilai x dari koordinat pertama
  • x₂ = nilai x dari koordinat kedua
  • y₁ = nilai y dari koordinat pertama
  • y₂ = nilai y dari koordinat kedua

Untuk lebih jelasnya, lihat pada contoh soal di bawah ya!!

Soal

Ok...
Setelah mengetahui rumus apa yang digunakan, sekarang kita bisa menghitung apa yang ditanyakan pada soal.

Soal :

1. Sebuah garis melewati titik (2,3) dan (1,p) dengan gradien 2. Hitunglah nilai p!


Tulis dulu yang diketahui :
  • Gradien (m) = 2
  • titik pertama = (2,3)
  • titik kedua = (1,p)


Menentukan masing-masing x dan y

Lihat titik pertama, yaitu (2,3).
Maka :
  • x₁ = 2
  • y₁ = 3

Lihat titik kedua, yaitu (1,p)
  • x₂ = 1
  • y₂ = p

Ok...
Jelas kan cara menentukan masing-masing nilai x dan y-nya??




Menghitung nilai p

Sekarang kita sudah memiliki data lengkapnya :

  • x₁ = 2
  • y₁ = 3
  • x₂ = 1
  • y₂ = p
  • m = 2

Masukkan ke dalam rumus



  • Untuk memudahkan perhitungan, kalikan silang
  • 2 dikalikan dengan -1
  • Sedangkan p-3 tetap karena tidak ada  kawan untuk perkalian silang



  • Pindahkan -3 ke ruas kiri sehingga tandanya berubah menjadi +3



Nah...
Akhirnya kita mendapatkan nilai p, yaitu 1.
Seperti itulah langkah-langkahnya.



Soal :

2. Sebuah garis lurus yang memiliki gradien 3, melewati titik (-1, 4) dan (b,-2). Berapakah nilai b?


Data yang ada pada soal :
  • Gradien (m) = 3
  • titik pertama = (-1,4)
  • titik kedua = (b,-2)


Menentukan masing-masing x dan y

Titik pertama (-1,4).
Maka :
  • x₁ = -1
  • y₁ = 4

Titik kedua (b,-2)
  • x₂ = b
  • y₂ = -2



Menghitung nilai p

Data pada soal sekarang menjadi :

  • x₁ = -1
  • y₁ = 4
  • x₂ = b
  • y₂ = -2
  • m = 3

Hitung ke dalam rumus.




Kalikan silang antara 3 dengan b+1
Sedangkan (-2-4) diamkan saja.




  • 3×(b+1), semua yang ada di dalam kurung dikali dengan 3
  • 3×b = 3b
  • 3×1 = 3
  • Itulah cara membuka kurungnya ya

Kemudian :
  • Pindahkan +3 ke ruas kanan menjadi -3
Untuk mendapatkan b, bagi -9 dengan 3

Nah...
Kitapun mendapatkan nilai b, yaitu -3.


Baca juga ya :

Mencari gradien garis yang diketahui gambar grafiknya

Menentukan gradien garis dari sebuah grafik ada dua cara dan akan dijelaskan lebih lanjut pada pembahasan soalnya..



Soal :

1. Hitunglah gradien garis pada gambar dibawah ini..





Ada dua cara, yaitu cara rumus dan perhitungan cepat.
Mau yang cepat ya?

Sabar dulu dong..


Cara rumus

Mari perhatikan grafik diatas. Kita tentukan dulu koordinat dua titik yang sudah diketahui.

Pertama yang ada -3.

  • Dititik ini, -3 adalah nilai sumbu x
  • Sedangkan sumbu y nilainya 0 (karena terletak di sumbu x)
  • Jadi titik koordinatnya adalah (-3,0)

Kedua, titik yang ada 4.
  • Dititik ini, 4 adalah nilai sumbu y
  • Sedangkan sumbu x nilainya 0 (karena menempel disumbu y)
  • Titik koordinat disini adalah (0,4)




Sudah ada dua titik, yaitu (-3,0) dan (0,4)

(-3,0) :

  • x₁ = -3
  • y₁ = 0

(0,4) :
  • x₂ = 0
  • y₂ = 4

Rumus untuk mencari gradien adalah :

  • m = gradien

Masukkan nilai diatas ke dalam rumusnya.



Dan gradien garis diatas adalah ⁴∕₃.




Cara lebih cepat

Kita perhatikan lagi gambarnya..


Perhatikan lagi grafik diatas

  • Kita cari jarak pada sumbu x, dari titik 0 ke titik -3.
    Jaraknya adalah 3 (nilai minus jangan dipakai)
  • Kemudian pada sumbu y, dari titik 0 ke titik 4
    Jaraknya adalah 4

Sehingga sudah diperoleh :
  • x = 3
  • y = 4

Kemudian pakai rumus ini, rumusnya hampir sama dengan cara pertama.


Masukkan nilai x dan y



Tips!
Untuk cara ini, harus diperhatikan arah kemiringan garisnya.

  • Jika garisnya mengarah ke kanan atas, maka gradiennya positif
  • Jika garisnya mengarah ke kiri atas, maka gradiennya negatif.

Untuk soal ini, gambar grafiknya mengarah ke kanan atas, sehingga gradiennya positif.


Baca juga :

Garis dengan gradien (m) = 3 melewati titik (a,7) dan (6,13). Berapakah nilai "a"?

Ketika diketahui gradien garis lurus dan titik yang dilewatinya, maka mencari nilai "a" bisa dilakukan dengan mudah.


Mari kita coba contoh soalnya.


Soal :

1. Garis lurus dengan gradien (m) = 3 melewati titik (a,7) dan (6,13). Berapakah nilai dari "a"?


Data yang diketahui pada soal adalah :

  • gradien (m) = 3
  • titik (a,7)
  • titik (6,13)



Memecah titik yang diketahui


Pada soal diketahui dua titik dan sekarang kita akan memecahnya sebagai berikut :

Titik (a,7) :

  • x₁ = a
  • y₁ = 7

Titik (6,13) :
  • x₂ = 6
  • y₂ = 13

Bagaimana jika dibalik titiknya?
Titik (a,7) menjadi yang kedua dan titik (6,13) menjadi yang pertama?
Hasilnya sama saja kok!!
Jangan bingung ya..



Menggunakan rumus gradien


Sekarang kita akan menggunakan rumus gradien yang diketahui dua buah titiknya.



  • Masukkan data-data yang sudah diketahui ke dalam rumusnya..




  • untuk memudahkan perhitungan, kalikan silang antara 3 dan (6-a)
  • sedangkan 6 tetap karena tidak ada kawan untuk dikali silang

3 × (6-a) = 6

  • untuk membuka kurung, kalikan 3 dengan 6 hasilnya 18, kemudian kalikan 3 dengan -a, hasilnya -3a

18 - 3a = 6
  • pindahkan 6 ke ruas kiri menjadi -6
  • pindahkan -3a ke ruas kanan menjadi 3a

18 - 6 = 3a

12 = 3a
  • untuk mendapatkan a, bagi 12 dengan 3

a = 12 : 3

a = 4.


Jadi, nilai dari "a" adalah 4.




Soal :

2. Garis lurus dengan gradien (m) = ½ dan melewati titik (-2,3) dan (2,a). Berapakah nilai dari "a"?


Kita tulis data yang ada pada soal :

  • gradien (m) = ½
  • titik (-2,3)
  • titik (2,a)



Memecah titik yang diketahui


Titik (-2,3) :

  • x₁ = -2
  • y₁ = 3

Titik (2,a) :
  • x₂ = 2
  • y₂ = a



Menggunakan rumus gradien


Rumus yang digunakan adalah :




  • Masukkan data-data yang sudah diketahui ke dalam rumusnya..



  • kalikan silang antara 1 dan 4
  • kalikan silang antara 2 dan (a-3)

1 × 4 = 2 × (a-3)

  • untuk membuka kurung, kalikan 2 dengan a menjadi 2a
  • kemudian kalikan 2 dengan -3 menjadi -6

4 = 2a - 6
  • pindahkan -6 ke ruas kiri menjadi +6

4 + 6 = 2a

10 = 2a
  • untuk mendapatkan a, bagi 10 dengan 2

a = 10 : 2

a = 5.


Sehingga nilai "a" yang dicari adalah 5.




Baca juga ya :

Mencari Gradien Dari Garis 2x - 3y = 4

Langkah-langkah mendapatkan gradien suatu garis lurus akan dijabarkan disini dan perhatikan setiap langkahnya ya..

Sehingga paham dan mengerti dengan sangat baik..


Kita langsung coba soalnya..


Soal :


1. Berapakah gradien dari garis 2x - 3y = 4?


Untuk bisa mendapatkan gradien sebuah garis, perhatikan syarat berikut.



Syaratnya seperti ini :
  • Variabel "y" harus berada sendiri di ruas kiri
  • Dan angka di depan variabel "y" harus satu.


Sekarang kita cari gradiennya..

2x - 3y = 4

  • pindahkan 2x ke ruas kanan menjadi -2x
  • variabel "x" dipindah ke ruas kanan agar variabel "y" sendiri di ruas kiri

-3y = -2x + 4

  • Syarat selanjutnya adalah angka di depan "y" harus 1
  • Sedangkan sekarang ada angka -3 di depan "y"
  • Agar menjadi 1, maka bagi -3y dengan -3
  • untuk suku yang lain, yaitu -2x dan 4 juga harus dibagi -3




Terus, sekarang bagaimana?

  • Setelah "y" sendiri di ruas kiri dan angka di depannya 1, maka gradien adalah angka di depan "x"


Gradien adalah angka di depan "x"


Jadi, angka di depan "x" = ²/₃

Sehingga gradiennya juga  ²/₃




Soal :


2. Berapakah gradien dari garis 3x + 9y -7 = 0?



Syaratnya masih sama dengan soal pertama..




Syaratnya seperti ini :
  • Variabel "y" harus berada sendiri di ruas kiri
  • Dan angka di depan variabel "y" harus satu.


Sekarang kita cari gradiennya..

3x + 9y -7 = 0

  • pindahkan 3x ke ruas kanan menjadi -3x
  • pindahkan -7 ke ruas kanan menjadi +7

9y = -3x + 7

Sekarang variabel "y" sudah sendiri di ruas kiri dan tinggal angka depannya dijadikan 1.


  • Caranya membagi semua suku dengan 9.






Jadi...


Gradien adalah angka di depan "x"


Gradiennya adalah -¹/₃



Baca juga :

Garis "m" Tegak Lurus Dengan Garis 2x - 6y = 3. Berapakah Gradien Garis "m"?

Dalam soal diketahui jika kedua garis tersebut saling tegak lurus dan kita akan menggunakan rumus yang berhubungan dengannya.

Lebih lengkapnya langsung dilihat pada contoh soal..



Soal :


1. Garis "m" tegak lurus dengan garis 2x - 6y = 3. Berapakah gradien garis "m"?


Langkah-langkah mengerjakan soal ini sebagai berikut :

  • Mencari gradien garis 2x - 6y = 3
  • Menggunakan rumus gradien saling tegak lurus, kita cari gradien garis m



Mencari gradien garis 2x - 6y = 3


Untuk mendapatkan gradien garis ini, maka variabel y harus berada sendiri di ruas kiri dan angka di depannya harus 1.

Mari kita kerjakan..



Caranya adalah :

  • pindahkan 2x ke ruas kanan menjadi -2x
  • variabel y sekarang sudah sendiri di ruas kiri
  • agar angka di depan y menjadi 1, maka semuanya harus dibagi dengan -6 (sesuai angka yang ada di depan variabel y saat ini)
  • akhirnya kita mendapatkan variabel "y" yang angka depannya 1
Ketika angka di depan y sudah 1, maka :
  • gradien garisnya adalah angka di depan x.
  • gradien garisnya adalah ⅓

Kita sebut gradien ini sebagai n..
Sehingga "n" = ⅓





Mencari gradien garis "m"


Inilah syarat gradien dua garis yang saling tegak lurus



Karena kedua garis tersebut saling tegak lurus, maka hasil kali kedua gradiennya sama dengan minus satu..



Jadi :

Gradien m × gradien n = -1

Gradien m × ⅓  = -1

  • Untuk mendapatkan gradien m, bagi -1 dengan ⅓

Gradien m = -1 : ⅓
  • tanda bagi berubah menjadi kali dan pecahan dibelakangnya ditukar angkanya

Gradien m = -1 × ³/₁

Gradien m = -3.


Jadi gradien garis m yang tegak lurus dengan garis 2x - 6y = 3 adalah -3.




Soal :


2. Garis "k" tegak lurus dengan garis 9x - 3y - 4 = 0. Berapakah gradien garis "k"?


Caranya sama dengan soal pertama dan kita akan mengikuti langkah-langkah yang sudah ada.



Mencari gradien garis 9x - 3y - 4 = 0


Kita buat variabel "y" berada sendiri di ruas kiri..



Caranya adalah :

  • pindahkan 9x ke ruas kanan menjadi -9x
  • pindahkan -4 ke ruas kanan menjadi +4
  • sekarang variabel y sudah berada sendiri di ruas kiri
  • agar angka di depan y 1, maka bagi semuanya dengan -3 (sesuai dengan angka yang ada pada variabel y saat ini)
Ketika angka di depan y sudah 1, maka :
  • gradien garisnya adalah angka di depan x.
  • gradien garisnya adalah 3

Kita sebut gradien ini sebagai n..
Sehingga "n" = 3





Mencari gradien garis "m"


Mari ingat lagi syarat dua garis yang saling tegak lurus..



Karena kedua garis tersebut saling tegak lurus, maka hasil kali kedua gradiennya sama dengan minus satu..



Jadi :

Gradien k × gradien n = -1

Gradien k × 3  = -1

  • Untuk mendapatkan gradien k, bagi -1 dengan 3

Gradien k = -1 : 3

Gradien = -⅓


Jadi gradien yang kita cari adalah -⅓




Baca juga :